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Abstract: This work presents theory and numerical approach suitable for the solution of straight plane 

beams rested on an elastic unilateral (i.e. nonlinear modified Winkler's) foundation. The nonlinear reaction 

of the foundation can be described via nonlinear expression, in our particular case it is the positive part of 

the deflection function. The nonlinear differential equation of 4th-order is solved via standard Finite Element 

Method, which discretize the weak formulation of the problem. The Semi-smooth Newton’s method is used to 

solve discrete problem. 
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1. Introduction 

There are beams on elastic foundations which are frequently used in the technical practice; see Fig. 1a. In 

mechanics, the deflection 𝑣 = 𝑣(𝑥) [m] of the beam without any volume loads is described by differential 

equation 𝐸𝐽𝑍𝑇
𝑑4𝑣

𝑑𝑥4
+ qR = 0, where E [Pa] is the modulus of elasticity of the beam, 𝐽𝑍𝑇 [m

4
] is the major 

principal second moment of the beam cross-section and qR = qR(𝑥, 𝑣, … ) [N.m
-1

] corresponds to the 

reaction of the foundation (Frydrýšek et al., 2013; Frydrýšek et al., 2014); see Fig. 1b. Our work focuses 

on the solution of straight 2D beams of length 2L on an elastic foundation with nonlinear unilateral 

behaviour (linear Bernouli's beam, small deformations in the beam, Finite element Method); see Fig. 1. 

The methodology of the elastic foundation measuring applied in this paper is based on the pressing of a 

beam into the foundation (Klučka et al., 2014; Frydrýšek et al., 2014). on the displacement in the 

foundation can be approximated by nonlinear expression qR(𝑣) =
𝑘

2
(|𝑣| + 𝑣), see Fig. 1b. 

 
Fig. 1: a) Beam with cross-section b × h and length 2 L is resting on elastic unilateral foundation; 

b) Dependence of reaction force on deflection (i.e. foundation load-settlement behavior for a sand, 

experiment and suitable linear and nonlinear approximations) (Frydrýšek et al., 2014). 

                                                 
* Mgr. Zuzana Morávková PhD.: Department of Mathematics and Descriptive Geometry, VSB-Technical University of 

Ostrava; 17. listopadu 15/2172; 708 33, Ostrava; Czech Republic, zuzana.moravkova@vsb.cz 
** Mgr. Ivona Tomečková PhD.: Department of Mathematics and Descriptive Geometry, VSB-Technical University of Ostrava; 

17. listopadu 15/2172; 708 33, Ostrava; Czech Republic, ivona.tomeckova@vsb.cz  
*** Assoc. Prof. M.Sc. Karel Frydrýšek, PhD.: Department of Applied Mechanics, Faculty of Mechanical Engineering, VSB-

Technical University of Ostrava; 17. listopadu 15/2172; 708 33, Ostrava; Czech Republic, karel.frydrysek@vsb.cz 

670



 

 3 

For the sake of simplicity, the symbol 𝑣+ is used instead of the expression 
1

2
(|𝑣| + 𝑣) in this paper, i.e. 

qR(𝑣) = 𝑘
|𝑣|+𝑣

2
= 𝑘𝑣+, where the 𝑣+ is known as the positive part of 𝑣.  

2. Solved Example and its Boundary Conditions 

Let us suppose that the solved beam has symmetry (i.e. the beam geometry, beam material, the volume 

and surface loads and the foundation are symmetrical). Therefore it is sufficient to solve the differential 

equation for a half of the beam, i.e. 𝑥 ∈ 〈0;  L〉, see Fig. 1a. Hence, the deflection of the beam is described 

by the equation 𝐸𝐽𝑍𝑇
𝑑4𝑣

𝑑𝑥4
+ 𝑘𝑣+ = 0  for 𝑥 ∈ (0, L) with the following boundary conditions (prescribed 

in points x = 0 and x = L) 

 
𝑑𝑣(𝑥=0)

𝑑𝑥
 = 0,    (𝑥 = L) = 0,      𝑇(𝑥 = 0) = −

F

2
,     𝑇(𝑥 = L) = 0, (1) 

where 𝑇(𝑥)  =  −𝐸𝐽𝑍𝑇
𝑑3𝑣(𝑥)

𝑑𝑥3
 [N] is shearing force and 𝑀𝑜(𝑥)  = −𝐸𝐽𝑍𝑇

𝑑2𝑣(𝑥)

𝑑𝑥2
 [N.m] is bending moment. 

3. Weak formulation of beam on unilateral foundation  

Let’s denote 𝑉 as a space of virtual displacements and then 𝑉 = {𝑤 ∈ 𝐻2((0 , L)): 
𝑑𝑤(𝑥=0)

𝑑𝑥
= 0 }, where 

𝐻2((0, L)) is Sobolev function space (i.e. Hilbert space with inner product (𝑣, 𝑤) = ∫
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
L

0
+
𝑑𝑣

𝑑𝑥

𝑑𝑤

𝑑𝑥
+

 𝑣 𝑤 𝑑𝑥), see (Kufner et al., 1977). We multiply differential equation by virtual displacement 𝑤 ∈ 𝑉 and 

integrate over the half length of the beam.  

Then we obtain equation 𝐸𝐽𝑍𝑇 ∫
𝑑4𝑣

𝑑𝑥4
L

0
𝑤 𝑑𝑥 + 𝑘 ∫ 𝑣+

L

0
𝑤 𝑑𝑥 = 0, which is fulfilled for arbitrary 𝑤 ∈ 𝑉.  

If we apply the integration by parts formula to the first integral and once more and subtract the boundary 

expressions from the left side to the right side we get 

 𝐸𝐽𝑍𝑇 ∫
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2

L

0
 𝑑𝑥 + 𝑘 ∫ 𝑣+

L

0
𝑤 𝑑𝑥 = − [𝐸𝐽𝑍𝑇

𝑑3𝑣

𝑑𝑥3
𝑤]

0

L

+ [𝐸𝐽𝑍𝑇
𝑑2𝑣

𝑑𝑥2
𝑑𝑤

𝑑𝑥
]
0

L

. (2) 

From the boundary conditions (1) and from the property of 𝑤 ∈ 𝑉 we obtain  

−[𝐸𝐽𝑍𝑇
𝑑3𝑣

𝑑𝑥3
𝑤]

0

L

= −𝐸𝐽𝑍𝑇
𝑑3𝑣(L)

𝑑𝑥3
𝑤(L) + 𝐸𝐽𝑍𝑇

𝑑3𝑣(0)

𝑑𝑥3
𝑤(0) =

F

2
𝑤(0) 

and [𝐸𝐽𝑍𝑇
𝑑2𝑣

𝑑𝑥2
𝑑𝑤

𝑑𝑥
]
0

L

= 𝐸𝐽𝑍𝑇
𝑑2𝑣(𝐿)

𝑑𝑥2
𝑑𝑤(𝐿)

𝑑𝑥
− 𝐸𝐽𝑍𝑇

𝑑2𝑣(0)

𝑑𝑥2
𝑑𝑤(0)

𝑑𝑥
= 0, and then the weak formulation of the 

beam defection on the unilateral foundation is following 

find 𝑣 ∈ 𝑉 such that  𝐸𝐽𝑍𝑇 ∫
𝑑2𝑣

𝑑𝑥2
𝑑2𝑤

𝑑𝑥2
𝐿

0
 𝑑𝑥 + 𝑘 ∫ 𝑣+

𝐿

0
𝑤 𝑑𝑥 =

F

2
𝑤(0) is fulfilled for all 𝑤 ∈ 𝑉. (3) 

The solvability (the existence of any solution) of (3) depends on the beam loads in general. In our 

particular case the necessary condition is inequality 
F

2
𝑝(𝑥 = 0) >  0, which is supposed to be fulfilled for 

arbitrary linear polynomial 𝑝 positive on (0, L). It means that the prescribed external force F must be 

positive. See (Sysala, 2008) for details. 

4. Discretization by FEM 

Let’s divide the interval (0, L) into n parts of the same length. This equidistant discretization with nodes 

𝑥1 = 0, 𝑥𝑖+1 = 𝑥𝑖 + ℎ has the constant step ℎ = L/𝑛. The discrete approximation of the space 𝑉 denoted 

by the symbol 𝑉ℎ is a subspace of the set of all smooth piecewise-cubic functions. Moreover, the first 

derivative of the every element of 𝑉ℎ is zero for 𝑥 = 0. The choice of the space 𝑉ℎ stems from the 

convergence requirements of FEM theory, see (Haslinger, 1980) and from the mathematical embedding 

theory, see (Kufner et al., 1977). Follows that  𝑉ℎ ⊂ 𝑉. It is a finite dimensional space and therefore it has 

a basis, which is formed by piecewise-cubic functions 
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𝜑2𝑖−1(𝑥) =

{
 

 1 −
2(𝑥−𝑥𝑖)

3

ℎ3
−

3(𝑥−𝑥𝑖)
2 

ℎ2
 for 𝑥 ∈ 〈𝑥𝑖−1, 𝑥𝑖〉,

1 +
2(𝑥−𝑥𝑖)

3

ℎ3
−

3(𝑥−𝑥𝑖)
2 

ℎ2
 for 𝑥 ∈ 〈𝑥𝑖 , 𝑥𝑖+1〉,

0                                                   otherwise,

   𝜑2𝑖(𝑥) =

{
 

 
(𝑥−𝑥𝑖)

3

ℎ2
+

2(𝑥−𝑥𝑖)
2

ℎ
+ (𝑥 − 𝑥𝑖)  for 𝑥 ∈ 〈𝑥𝑖−1, 𝑥𝑖〉,

(𝑥−𝑥𝑖)
3

ℎ2
−

2(𝑥−𝑥𝑖)
2

ℎ
+ (𝑥 − 𝑥𝑖)  for  𝑥 ∈ 〈𝑥𝑖 , 𝑥𝑖+1〉,

0                                                              otherwise.

  

It is obvious that the base functions are nonzero only on two subintervals of the beam discretization. The 

discrete form of (3) is following 

find 𝑣ℎ ∈ 𝑉ℎ such that 𝐸𝐽𝑍𝑇 ∫
𝑑2𝑣ℎ

𝑑𝑥2
𝑑2𝜑𝑖

𝑑𝑥2
𝐿

0
 𝑑𝑥 + 𝑘 ∫ 𝑣ℎ

+𝐿

0
𝜑𝑖  𝑑𝑥 =

𝐹

2
𝜑𝑖(0) for all 𝑖 = 1,… ,2𝑛 + 2.  (4) 

Because the solution 𝑣ℎ of (4) is element of the space 𝑉ℎ, we can write 𝑣ℎ = ∑ 𝑢𝑖 𝜑𝑖(𝑥)
2𝑛+2
𝑖=1 . The values 

𝑢𝑖 for odd indexes are the deflections of 𝑣ℎ in the nodes of the discretization and values 𝑢𝑖 for the even 

indexes are the slopes in nodes 𝑥𝑖 and therefore 𝒖 = (𝑣ℎ(𝑥1),
d𝑣ℎ(𝑥1)

𝑑𝑥
, 𝑣ℎ(𝑥2),

d𝑣ℎ(𝑥2)

𝑑𝑥
, … 𝑣ℎ(𝑥𝑛+1),

d𝑣ℎ(𝑥𝑛+1)

𝑑𝑥
)
T

. The 

algebraic FEM representation of the first integral in (4) and the right side of (4) can be set by a standart 

way and the local stiffness matrix on one subinterval of discretization can be derived     

𝑲𝒆  = (

12 6ℎ −12 6ℎ
6ℎ 4ℎ2 −6ℎ 2ℎ2

−12 −6ℎ 12 −6ℎ
6ℎ 2ℎ2 −6ℎ 4ℎ2

), see (Kolář et al., 1979). 

The global stiffness matrix K and the global load vector f corresponding to (4) are shown (example for 

𝑛 = 4, ℎ = L/𝑛 constant). 

 𝑲 =
1

ℎ3

(

 
 
 
 
 
 
 

12 0 −12 6ℎ 0 0 0 0 0 0
0 ℎ3 0 0 0 0 0 0 0 0
−12 0 24 0 −12 6ℎ 0 0 0 0
6ℎ 0 0 8ℎ2 −6ℎ 2ℎ2 0 0 0 0
0 0 −12 −6ℎ 24 0 −12 6ℎ 0 0
0 0 6ℎ 2ℎ2 0 8ℎ2 −6ℎ 2ℎ2 0 0
0 0 0 0 −12 −6ℎ 24 0 −12 6ℎ
0 0 0 0 6ℎ 2ℎ2 0 8ℎ2 −6ℎ 2ℎ2

0 0 0 0 0 0 12 −6ℎ 12 −6ℎ
0 0 0 0 0 0 6ℎ 2ℎ2 −6ℎ 4ℎ2)

 
 
 
 
 
 
 

 ,   𝒇 =

(

 
 
 
 
 
 
 

F

2

0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 

 (5) 

5. The nonlinear mapping 

We will present a way how to find an algebraic representation of the second integral in (4), which 

contains the nonlinear expression 𝑣ℎ
+ = (|𝑣ℎ| + 𝑣ℎ)/2 = (|∑𝑣𝑖 𝜑𝑖| + ∑𝑣𝑖 𝜑𝑖)/2. We first use the 

trapezoidal rule for approximating the integral ∫ 𝑣ℎ
+𝑤ℎ

L

0
 𝑑𝑥. The main goal of this is that we get 

approximation | ∑ 𝑣𝑖𝜑𝑖𝑖 | ≈ ∑ |𝑣𝑘|𝜑𝑘𝑘 , where the index 𝑖 is form the set {1, 2, 3, …2𝑛 + 2} and 𝑘 is form 

{1, 3, 5, …2𝑛 + 1}. Now we get the homogenous equation 𝐺(𝑢) = 0 for 𝐺(𝑢) =  𝐸𝐽𝑍𝑇𝑲𝑢 + 𝑘𝑩𝑢
+ − 𝒇 

instead of (4), where matrix 𝑲 and vector 𝒇 are from (5) and where the matrix 𝑩 is diagonal,  

𝑩 = diag(ℎ/2,0, ℎ, 0, ℎ, 0, ℎ, 0, ℎ/2,0).  

Because we do not have available any derivation due to the absolute value in 𝑢+, we cannot use the well-

known Newton-Raphson’s method. For this reason, we use semi-smooth Newton's method, see (Chen et 

al., 2001). This method introduces so called slanting function 𝐺𝑜 and use it instead of Jacobian in the 

iterations. We define 𝐺𝑜(𝑢) =  𝐸𝐽𝑍𝑇𝑲+  𝑘 𝑩 diag(𝐴(𝑢
+)) in our case, where the symbol 𝐴(𝑢+) stands 

for the active set of indexes of nods, in which subsoil is active. The resulting iterative equation in the 

(n+1)-th step is 𝑢(𝑛+1) = 𝑢(𝑛)  − 𝐺𝑜(𝑢(𝑛))−1 𝐺(𝑢(𝑛)) for known solution 𝑢(𝑛) from the previous step. 

This iteration process converges for sufficiently small distance between the initial vector 𝑢(0) and the 

exact solution of the equation 𝐺(𝑢) = 0. 

6. Results 

The acquired FE results, see Fig. 2, were compared with the Central Difference Method too (Frydrýšek at 

al., 2014) with good agreement. There is a comparison of unilateral and bilateral approaches of elastic 

foundation in Fig. 2. For example: 
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𝑣𝑀𝐴𝑋,𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 9.0607 × 10
−4 m,  𝑣𝑀𝐴𝑋,𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =  9.4242 ×  10−4 m, 

𝑀𝑜 𝑀𝐴𝑋,𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 6.2070 × 10
4 N.m and  𝑀𝑜 𝑀𝐴𝑋,𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =  6.6701 ×  104 N.m. 

            

        

Fig. 2: Beam on unilateral and bilateral elastic foundation (𝐿 = 6 𝑚, 𝑏 = 0.2 𝑚, ℎ = 0.4 𝑚,

𝐹 =  105 𝑁, 𝐸 = 2 ×  1011 𝑃𝑎, 𝑘 = 2.3587 × 107 𝑃𝑎). 

7. Conclusions 

Straight beams on elastic foundations which nonlinear unilateral foundation were exposed and solved (i.e. 

theory, weak formulation, finite elements, semi-smooth Newton's method and results). The differences 

between unilateral and simple bilateral foundation are shown. Note, the beams on unilateral foundation 

cannot be solved via Newton's method but via semi-smooth Newton's method as shown in out article. 
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