
 
23

rd
 International Conference  

ENGINEERING MECHANICS 2017 

Svratka, Czech Republic, 15 – 18 May 2017 

SHAFT VIBRATION OF THE TRUCK 

P. Kučera
*
, V. Píštěk

**
 

Abstract: This article describes analysis of vibrations in a powertrain of a truck with 8 x 8 drive. It may be 

caused by a deflection of the rotating drive shaft. The aim was to reduce the vibrations, therefore, a transient 

computational model I for analysis of shaft deflection was created in Matlab software. Analytical and 

differential equations are used. This model I was compared to the simulation of the transient behaviour of 

model II with the use of FEM. To verify the computational models, measurements of the shaft deflection and 

directional vibrations were carried out. The conclusion presents the interpretation of the results of old and 

new modification of the powertrain and the cause of vibration is also demonstrated.  
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1. Introduction 

The vibrations affect the drive comfort and may also affect the health of the driver. Therefore, an analysis 

of the vibrations has become important not only with the passenger cars but also with trucks. The 

vibrations in trucks may be more intensive and may generate noise. This article deals with the truck 

vibration. It is a complex dynamic system where the vibrations may occur in any of powertrain parts. 

These vibrations may be caused by a deflection of the powertrain rotating shaft. The analysed truck 

showed problems with vibrations and noise after reaching a certain speed. It was documented abroad, 

where the limits of the European legislations are irrelevant. Therefore, a dependence on the shaft speed 

and deflection was assumed. To analyse the longest shaft deflection, the transient computational model I 

was created using analytical and differential equations. Model II uses Finite Element Method (FEM) and 

this model II works as a check for model I. The validation of the computational models was carried out by 

several measurements on the truck with 8x8 and 8x4 drive. The directional vibrations and shaft deflection 

were measured. The conclusion presents results from both the computational models and measured data. 

This article is based on the literature by Kučera (2015), Waller (1989) and Tůma (2014). 

2. Computational models 

Two computational models of the shaft deflection were prepared. Fig. 1 shows the 3D model of the drive 

shaft used for the computational model analysis and measuring position. 

 

Fig. 1: 3D model of the drive shaft and the measuring position on the right. 

First computational model of a rotating shaft with equations based on Budynas (2015) was created. The 

computational model I of the drive shaft includes the part of the shaft between the two bearings in Fig. 1. 

This part of the shaft is divided into n mass points. Number of n is depended on converge of the task. In 

this example, there is n equal to 100. Boundary conditions of the shaft deflection were carried out by the 
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measurement on the truck. This initial deflection was set in the models. The shaft deflection is based on 

these equations 

 𝐴 = 𝐴𝑠/(sin⁡(𝐿𝑚𝜋/𝐿)), (1) 

 𝑟𝑆 = 𝐴𝑠𝑖𝑛(𝑥𝑖𝜋/𝐿), (2) 

where A is deflection in the middle of the analysed shaft length, As – deflection in the measured position, 

Lm – location of measurement, L – shaft length, rS – initial shaft deflection in the individual points 

dependent on shaft segments and xi – coordinates of the shaft section. 

 

Fig. 2: Forces and torques impacting on the drive shaft model I. 

Centrifugal forces act on the individual mass points of the shaft. Their values were determined in each 

step of the simulation. The following equation was used 

 𝐹𝑖 = 𝑚𝑖𝑟𝑖𝜔𝑗
2 − 𝐹𝑖−1, (3) 

where Fi is the centrifugal force in the location of the individual mass points, mi – mass of the mass point, 

ri – shaft deflection in the location of the given mass point and j – shaft angular speed. It may be 

assumed that the shaft boundary conditions will be between the hinged and fixed. The most important 

boundary condition is presented in Fig. 2. It describes the shaft with rotational stiffness in the support. 

MA, MB are the moment reactions and FA, FB the force reactions. For the beam with the defined stiffness in 

the support the force equation, moment equation and two equations (4 – 5) for rotation in points A and B 

will be used. It is calculated using the Maxwell-Mohr variant of the Castigliano’s theorem. 
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where A, B are rotations in points A and B, CA, CB – rotational stiffness in the support, Mo – bending 

moment, E –  modulus of elasticity, and J – quadratic moment of the shaft cross-section. To gain values 

of the deflections in the individual steps, the equation of the deflection line is used. The distance between 

the mass points is the same as the distance between the forces. The equations of the deflection line are 

defined as follows 
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where i is 1, 2, 3, n + 2, q is 1, 3, 5, n + 2, w is displacement and C integration constants. These constants 

have to be determined from the boundary conditions, i.e. the zero displacements in the support. 

Furthermore, the rotation and deflection values have to be equal between the individual segments. The 

computational model I is formed in Matlab software. Subsequently, analyses of the 3D parts of the shaft, 

differential to name but a few were performed using FEM. This computational model II works as a check 

for model I, therefore, there is no need for detailed description. 

3.  Measurement and evaluation of the directional vibration and computational models 

The measurement of the rotating shaft deflections and directional vibrations was carried out with the use 

of a modular switchboard IMC CRFX 400, card ICPU2-8 and the card CRFX/ISO2-8. Two three-axial 
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accelerometers, a deflection sensor and a photoelectric reflex switch were used. During the measurement 

the speed was increased to gain data from the whole span of the truck speed. Subsequently, FFT 

spectrums, Tůma (2014), of measured vibrations and shaft deflections were interpreted depending on the 

shaft speed. Scripts to process the data in Matlab software were created. The signal of the shaft rotations 

is averaged. The measuring position is illustrated in Fig. 1. The speed signal was recorded as a mark per 

rotation from the photoelectric reflex switch. The measurement of the shaft deflections was carried out by 

a BAW M30ME-UAC10B-S04G sensor. To measure the drivetrain vibration, two three-axial 

piezoelectric accelerometers Brüel & Kjær 4524 were used. To interpret the vibration, the FFT analysis 

from the segment representing the given speed was used. The sample frequency was 20 kHz. From these 

analyses FFT spectrums were calculated (see in Figs. 3 – 6). The figures show the peak which stands for 

the 1st shaft speed harmonic order. 

  

Fig. 3: Analysis of directional vibration – 8 x 4 drive, old and new powertrain (accelerometer 1). 

  

Fig. 4:  Analysis of directional vibration – 8 x 8 drive, old and new powertrain (accelerometer 1). 

  

Fig. 5:  Analysis of directional vibration – 8 x 4, old and new powertrain (accelerometer 2). 

  

Fig. 6:  Analysis of directional vibration – 8 x 8 drive, old and new powertrain (accelerometer 2). 

This is the most important factor of the vibration affecting the driver. More peaks occur mainly with the 

all-wheel drive. But these frequencies are higher than 100 Hz, therefore, it is not important for drive 

comfort ISO 2631-1 (1997). The comparison of measurements before and after the powertrain 

modification is also shown. A reduction of vibrations was reached and it is illustrated in Figs. 3 – 6 on the 

right. 
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The results of shaft deflection of computational models and measurement are shown in Fig. 7. Other 

submodels of the model I and II are also compared. 

 

Fig. 7: Comparison of the measured values and computational models. 

The measured data were for the span of the shaft rotations in the area of 400 –  2600 min
-1

. These values 

were averaged and compare with computational models. There is a correspondence of measurement and 

computational models in the range to 1700 min
-1

. Another section of the graph is different because the 

deflection is limited in the real shaft (measurement). The shaft deflection limit is 3.4 mm by the 

dimensions around the shaft. The results of the deflection measurement, vibration analysis and model 

simulation show that the deflection of this shaft is the main cause of the vibration. To decrease the truck 

vibration, it was necessary to minimalize this shaft deflection. Therefore, a powertrain modification was 

designed. Two new shafts had been designed and they replaced the original one. These shafts are 

connected by a special hub with a bearing. The following measurement proved that the shaft deflection 

was decreased (see curve 8 in Fig. 7 or in Figs. 3 – 6 on the right). 

4.  Conclusions 

There were some problems with vibrations and noise after reaching a certain speed. Therefore, the 

measurements were carried out. Then their values were compared with the transient computational 

models and FFT analyses were performed. Based on the results, the computational model I is suitable for 

another analysis of the shaft deflection. The shaft deflection was reduced by the constructional design. 

The support of the analysed shaft led to the decrease of vibrations and a near loss of the 1
st
 shaft speed 

harmonic order. This corresponds to the analysis of the directional vibration and 1
st
 shaft speed harmonic 

order is the main cause of the vibrations on the truck. The first computational model may be easily used 

for the development of the powertrain with long shafts where some deformation or unbalance may occur. 
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