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Abstract: In order to design an optimal experimental setup the designers have to take into account 

uncertainties connected to the investigated system. The input random factors associated with for example 

values of loading, specimen dimensions or measurement errors influence behaviour of the system, which thus 

becomes also uncertain. From this point of view, the experiment design is a very important because it effects 

amount of information which can be obtained from the experiment. More specifically, accuracy of the 

identified parameters from indirect experimental measurements depends on experimental settings. In this 

contribution we demonstrate a role of random factors in a nonlinear model calibration on an illustrative 

example of one dimensional heat conduction. The thermophysical parameters such as thermal capacity and 

thermal conductivity are identified on a basis of noisy measurements from experiments with different setup. 

The experiments vary in a number of sensors and number of observed time steps. The presented statistical 

analysis shows dependence of the parameter estimation on the choice of measured quantities involving 

different uncertainties. 

Keywords:  Random factors, Uncertainty quantification, Inverse problems, Nonlinear regression, Heat 

conduction. 

1. Introduction 

Thanks to extensive developments in the field of uncertainty quantification in the last decades we are 

enabled to simulate the nonlinear systems with uncertain input parameters. It brings advantages as for 

example opportunity to design optimized and robust experiments for calibrating the models of such 

systems (Jarušková et al., 2016).  

Involving random factors into the analysis of the system requires an appropriate formulation of the 

problem with respect to the considered source of uncertainty. Uncertainties can be separated into two 

principal categories according to whether a source of nondeterminism is irreducible or reducible 

(Oberkampf et al., 2002; Der Kiureghian et al., 2009). This contribution focuses on epistemic (reducible, 

subjective, cognitive) uncertainties arising from our lack of knowledge which is supposed to be reduced 

by any new measurement according to the coherence of learning (Mantovan et al., 2006; Beven et al., 

2007). While aleatory uncertainty expresses the inherent randomness which cannot be reduced. 

An efficient experiment design provides enough amount of suitable information which allows successful 

estimation of the model parameters with maximal reduction of the epistemic uncertainties. The 

corresponding inverse problems can be solved in deterministic or stochastic way (Tarantola, 2005) but in 

the both cases the identification approach has to be chosen appropriately considering the involved 

uncertainties. 
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This contribution concentrates on comparison of random factor influence on parameter estimation based 

on nonlinear regression (Seber et al., 1989). Distinct sources of uncertainty are included as well as 

different experimental conditions. 

2. Numerical study 

The role of uncertain parameters in estimation of the system parameters is demonstrated on an illustrative 

example of one dimensional heat conduction, where observable is temperature in the location 𝑥 and time 

step 𝑡. The thermal diffusion equation  

 𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝜆

𝜕2𝑇

𝜕𝑥2 + �̇�, (1) 

where 𝜆 is thermal conductivity, 𝜌 is density and 𝑐𝑝 is thermal capacity, can be solved with using thermal 

diffusivity defined as 𝛼 =
𝜆

𝜌𝑐𝑝
 for initial condition 𝑇 =  𝑇∞ = 10 °C and constant flux boundary condition 

at 𝑥 = 0  𝑞𝑥 = −𝜆
𝑑𝑇

𝑑𝑥
= 𝑞0 = 100 W/m2 as 

 𝑇 = 𝑇∞ +
𝑞0

𝜆
[2√

𝛼𝑡

𝜋
exp (−

𝑥2

4𝛼𝑡
) − 𝑥 (1 − erf

𝑥

2√𝛼𝑡
)]. (2) 

The parameters to be identified are the thermal conductivity and the thermal capacity. Their true values 

are 𝜆 = 2 W. m−1K−1 and 𝑐𝑝 = 1000 J. m−3K−1. The considered domains of the parameters in the 

identification procedure are intervals [1.6, 2.4] W. m−1K−1 for 𝜆 and [750, 1700] J. m−3K−1 for 𝑐𝑝. 

2.1. Uncertainties 

In our particular example, there are three types of uncertain inputs. The first one is connected to loading, 

when the heat flux is burdened by an error 𝜀1which is a normal random variable with zero mean value and 

standard deviation 1 W/m2. This uncertain input is a constant for the whole experiment regardless of the 

number of sensors and time steps. The second uncertainty is a systematic error 𝜀2 of sensors, which is an 

additive error modeled as a normal random variable with zero mean value and standard deviation 

0.005 °C. This uncertain input is a constant for every sensor in the experiment regardless of the number of 

time steps. The last source of uncertainty is a measurement random error, which is also an additive error 

modeled as a normal random variable with zero mean value and standard deviation 0.1 °C, but its value 

differs for each measured temperature. 

2.2. Estimation of thermophysical parameters 

Uncertainty quantification is based on statistical analysis of 104 repetitions of the experiments simulated 

numerically. The synthetic experimental data are generated according to the following equation of the 

model modified by involving the uncertainties: 

 𝑇𝐸𝑥𝑝(𝑥, 𝑡) = 𝑇∞ +
𝑞0+𝜀1

𝑘
[2√

𝛼𝑡

𝜋
exp (−

𝑥2

4𝛼𝑡
) − 𝑥 (1 − erf

𝑥

2√𝛼𝑡
)] + 𝜀2(𝑥) + 𝜀3(𝑥, 𝑡). (3) 

The parameters are estimated from each experiment separately by using the method of nonlinear least 

squares regression. The identification is based on fitting the response of the numerical model to the 

experimental data. This deterministic approach leads to optimising parameters so as to minimise the 

objective function 

 𝑓(𝜆, 𝑐𝑝) = ∑ ∑ (𝑇𝐸𝑥𝑝,𝑖,𝑗 − 𝑇𝑖,𝑗(𝜆, 𝑐𝑝))
2

𝑛𝑡
𝑗=1

𝑛𝑥
𝑖=1 . (4) 

The parameter estimation is provided for different numbers of sensors 𝑛𝑥 from one to 40 sensors 

uniformly distributed on the interval 𝑥 ∈ [0.02, 0.2] m (and different numbers of observed time steps 𝑛𝑡 

from 5 to 160 steps uniformly distributed on the interval 𝑡 ∈ [10, 240] min. 

Comparison of standard deviations of the parameters obtained for different combinations of 𝑛𝑥 and 𝑛𝑡 is 

shown in Tab. 1. As expected the standard deviations decrease for the specific 𝑛𝑥 with increasing 𝑛𝑡 as 

well as for the specific 𝑛𝑡 with increasing 𝑛𝑥. The efficiency of the estimation does not dependent only 

on the total number of measurements 𝑛𝑡 ∙ 𝑛𝑥, but the specific experiment setup plays an important role. 
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Tab. 1: Identified standard deviation of the parameters depending on 𝑛𝑥 and 𝑛𝑡. 

 STD 𝜆 [W. m−1K−1] STD 𝑐𝑝 [J. m−3K−1] 

𝑛𝑡\𝑛𝑥 1 5 10 20 40 1 5 10 20 40 

5 0.3106 0.0634 0.0515 0.0409 0.0325 144.63 30.22 26.92 20.09 16.24 

10 0.2793 0.0477 0.0396 0.0321 0.0276 126.12 24.64 19.92 16.19 13.89 

20 0.2362 0.0369 0.0318 0.0274 0.0241 135.59 18.39 15.50 13.85 11.96 

40 0.1864 0.0302 0.0265 0.0241 0.0220 94.69 14.84 13.33 12.11 10.99 

80 0.1377 0.0258 0.0236 0.0223 0.0214 71.64 13.08 11.67 11.26 10.67 

160 0.0997 0.0234 0.0224 0.0214 0.0207 51.73 11.60 11.14 10.73 10.30 

For the case of measuring by only one sensor but in different numbers of time steps the obtained marginal 

distributions of the parameters are depicted in Fig. 1. For 𝑛𝑡 ≤ 40 the influence of uncertain inputs is so 

significant that the optimisation algorithm pulls the optimum to the bounds of the domain. In the case of 

the higher numbers of time steps the mean value of the thermal conductivity 𝜆 is identified well whereas 

the mean value of the thermal capacity 𝑐𝑝 is not a good match. This phenomenon can be explained by the 

fact that the influence of the random measurement error is reduced by increasing 𝑛𝑡 but the systematic 

sensor error and random loading factor have the undiminished impact on the parameter estimation. 

 

Fig. 1: Marginal distributions of 𝜆 and 𝑐𝑝 identified from measurements obtained  

by only one sensor in different numbers of time steps 𝑛𝑡.  

Fig. 2 shows the marginal distributions of the parameters identified from measurements obtained by 

different numbers of sensors 𝑛𝑥 in 40 time steps. In this case the mean value of the thermal capacity 

obviously converges. Usage of several sensors enables to reduce the influence of the experimental 

random as well as systematic error. 

 

Fig. 2: Marginal distributions of 𝜆 and 𝑐𝑝 identified from measurements obtained  

by different numbers of sensors 𝑛𝑥 in 40 time steps.  
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The error associated with loading is not reduced at all because it has one constant value for the whole 

experiment regardless of the number of sensors and time steps. This fact causes that the variance of the 

parameters asymptotically converges with an increasing number of measurements to a non zero value. 

3. Conclusions 

The presented analysis of random factor impact on the parameter estimation compares different sources 

of epistemic uncertainties and corresponding possibilities to reduce them. The uncertain system under the 

study is one dimensional heat conduction with random heat flux and two types of experimental errors. 

The study shows efficiency of the identification of thermal conductivity and thermal capacity on a basis 

of the different experimental setups. The temperature measured by only one sensor does not provide 

enough information to allow reduction of the systematic experimental error but the random experimental 

error is reduced increasingly with a higher number of observed values of temperature in different time 

steps. In order to diminish the systematic error more sensors have to be employed. The uncertainty caused 

by randomness of loading cannot be reduced in any considered settings. The mentioned conclusions have 

to be taken into account in designing an optimal experiment whose purpose is to get sufficient 

information for parameter identification from noisy indirect experimental data. 
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