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Abstract: An application of Discrete shear gap (DSG) method to the isogeometric Timoshenko beam 

element with variable curvature is presented. A locking-removal capability of DSG is compared to the 

reduced integration. While the reduced integration does not remove stress or strain oscillations, DSG 

provides results matching exact solution. The application of DSG method results in full stiffness matrix of a 

patch and compared to reduced integration is computationally more demanding. This possibly leads to a 

deterioration of overall time efficiency of the isogeometric approach. Thus the computational performance of 

the element is compared to the standard straight beam element. Results proved the enormous time efficiency 

of isogeometric element over standard FEA and excellent convergence properties of DSG method.  
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1. Introduction 

Isogeometric analysis (Hughes et al., 2005) is a recently developed alternative of standard finite element 

method, which has been proposed to bridge the gap between CAD (Computer Aided Design) and FEA 

(Finite Element Analysis). In practice, CAD models are mostly represented by the splines, while the 

standard FEA is usually based on polynomial basis functions. Isogeometric analysis uses the spline basis 

for both CAD and FEA data representations. 

The switch of basis functions from polynomials to splines in FEA offers great benefits. The same 

geometry representation can be shared by both CAD and FEA systems and thus no transformation from 

one to another is needed. Moreover spline functions enable exact description of the shapes which cannot 

be exactly described by polynomials (e.g. conic sections). These aspects can significantly improve 

computational efficiency and accuracy. 

An exact geometry representation in isogeometric analysis can be especially profitable for structures of 

curved geometries. Main focus of this paper is placed on structural analysis of curved beams. Timoshenko 

beam element based on work of Bouclier (2012) is presented. The formulation of the element suffers from 

locking phenomena and DSG method is used to unlock the element. Finally, the computational efficiency 

over classical straight beam element is studied.   

2. Isogometric beam element 

The presented element formulation uses NURBS (Non-Uniform Rational B-Splines) as a basis functions 

for both geometry description and unknown approximations. A 𝑝𝑡ℎ degree NURBS functions 𝑁𝑖
𝑝

 are 

generated from B-splines as 

 
𝑁𝑖

𝑝(𝜉) =
𝑆𝑖

𝑝(𝜉)𝑤𝑖

∑ 𝑆𝑖
𝑝(𝜉)𝑤�̂�

𝑛
�̂�=1  

 , (1) 

where 𝑆𝑖
𝑝

 are 𝑝𝑡ℎ degree B-spline functions, 𝑤𝑖 are the weights associated with the corresponding basis 

function and 𝜉 ∈ (0, 1) is a parametric coordinate running through the entire patch (subdomain of knot 
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spans which are seen as “elements” in isogeometric analysis). See Piegl (1997) for better understanding 

of NURBS geometry. 

A curved Timoshenko beam element with three independent unknowns, tangential displacement 𝑢𝑡(𝑠), 

normal displacement 𝑢𝑛(𝑠) and rotation 𝜃(𝑠), is being considered. Membrane, transverse shear and 

bending strains are given by 

 
𝜀𝑚(𝑠) =  𝑢𝑡

′ (𝑠) −
𝑢𝑛(𝑠)

𝑅(𝑠)
,       𝛾𝑠(𝑠) =

𝑢𝑡(𝑠)

𝑅(𝑠)
+ 𝑢𝑛

′ (𝑠) − 𝜃(𝑠),       𝜒𝑏(𝑠) =  𝜃′(𝑠), (2) 

where curvilinear coordinate 𝑠 runs along the midline of the beam, the prime indicates a derivation with 

respect to the 𝑠 and 𝑅 is a radius of a curvature. For simplicity, the dependence on (𝑠) will be omitted in 

the following text. The stiffness matrix is evaluated using  

 
𝑲 =  ∫ 𝑩𝑇𝑫𝑩 𝑑𝑠,

𝐿

0

 (3) 

where strain-displacement matrix 𝑩  is derived using formulas for strain components (2) and D is a 

material matrix resulting from  

 𝑁 = 𝐸𝐴𝜀𝑚,          𝑄 =  𝐺𝐴𝛾𝑠,          𝑀 = 𝐸𝐼𝜒𝑏 , (4) 

where 𝑁, 𝑄 and 𝑀 are axial force, transverse shear force and bending moment, respectively. Young’s 

modulus 𝐸, shear modulus 𝐺, area 𝐴 and moment of inertia 𝐼 are the material and cross-section 

characteristics.  

3. Numerical locking 

Due to the independent approximation of displacements and rotation the element suffers from shear 

locking. The formula for bending strain results in lower order term than formula for shear strain (2), but 

actually this should be vice-versa. Moreover from the formula for the shear strain it is obvious that zero 

shear strain cannot be satisfied along entire patch when the same order interpolation of unknowns is used 

because of field-inconsistency (Adam et al., 2014). In this paper the performance of Discrete Shear Gap 

(DSG) method, originally developed for unlocking the standard finite elements (Bletzinger, 2000) and 

further extended also for isogeometric elements (Echter, 2010), is examined. 

The DSG approach can be divided into several steps yielding the modified strain-displacement matrix 𝑩 

used to evaluate stiffness matrix 𝑲. The main idea of the method is to satisfy the equation for shear strain 

(2) in integral sense (instead of pointwise). The shear contributions 𝑢𝑛
𝛾ℎ𝑖

 (so called “shear gaps”) to the 

deflection 𝑢𝑛 in the collocation points are calculated by integration of 𝛾𝑠
ℎ (2) as 

 
𝑢𝑛

𝛾ℎ𝑖
=  ∫ 𝛾𝑠

ℎ  𝑑𝑠
𝑠𝑖

0

=  ∫
𝑢𝑡

𝑅
+ 𝑢𝑛

′ − 𝜃 𝑑𝑠
𝑠𝑖

0

=  𝑩𝑫𝑺𝑮𝒓, (5) 

where the collocation points 𝑠𝑖 are given as Greville abscissa of the control points (Piegl, 1997). The 

modified shear displacements 𝑢𝑛
𝛾𝑚𝑜𝑑ℎ

 are interpolated using NURBS basis functions  

 
𝑢𝑛

𝛾𝑚𝑜𝑑ℎ

=  ∑ 𝑁𝑖�̃�𝑛
𝛾ℎ𝑖

𝑛

𝑖=1

. (6) 

In case of isogeometric analysis, the discrete shear gaps �̃�𝑛
𝛾ℎ

 are non-interpolatory, therefore they need to 

be expressed using values in the control points. For this purpose, the transformation matrix 𝑨  is derived 

 {𝑢𝑛
𝛾ℎ

} = 𝑨 {�̃�𝑛
𝛾ℎ

},      𝐴𝑖𝑗 =  𝑁𝑗(𝑠𝑖), (7) 

where {𝑢𝑛
𝛾ℎ

} are interpolatory values of shear gaps at control points and 𝑁𝑗(𝑠𝑖) is the 𝑗𝑡ℎ-basis function 

evaluated at 𝑖𝑡ℎ-collocation point. The modified shear strain is then given as 
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𝛾𝑠

𝑚𝑜𝑑ℎ
=  ∑ 𝑁𝑖

′�̃�𝑛
𝛾ℎ𝑖

𝑛

𝑖=1

 (8) 

and the modified part of the strain-displacement matrix  𝑩 corresponding to shear component is obtained 

by combining (5)-(8) as  

 
𝑩𝜸 =  𝑵′𝑨−𝟏𝑩𝑫𝑺𝑮. (9) 

It is important to note, that this modification has to be performed on the patch level, as the collocation 

points are located along the entire patch. Moreover the inverse of  𝑨 introduce a full global patch stiffness 

matrix. This leads to the higher computational cost which could possibly reduce the advantages of 

isogeometric approach and therefore should be further analysed. 

4. Numerical examples 

The presented isogeometric beam element has been implemented into OOFEM finite element code 

(Patzák, 2017) and its performance has been tested on the circular cantilever beam subjected to the tip 

force load (Fig. 1). Ability of reduced integration and DSG method to unlock the element with cubic 

approximation is illustrated in Fig. 1. For reduced integration, the scheme proposed by Bouclier (2012) 

has been used (i.e. two Gauss points per each knotspan + 2 additional Gauss points per patch). Both 

methods (DSG and reduced integration) show good results when the convergence of normal displacement 

at the tip of the beam is studied, nevertheless the reduced integration still suffers from the oscillations in 

strains along the beam (Fig. 1). The DSG method proven itself to successfully unlock the element and 

provide results in agreement with exact solution.   

In order to document the benefits of IGA over standard FEA, the computational performance of 

isogeometric element using DSG approach has been compared to classical straight Timoshenko beam 

element with cubic approximation which does not suffer from locking (Bittnar, 1992). To demonstrate the 

quality of solution, the 𝐿2 norm of normal displacement error ‖𝑒‖ 

 

‖𝑒‖ = √∫ (𝑢𝑛
𝑒𝑥𝑎𝑐𝑡 −  𝑢𝑛

ℎ)
2

𝐿

0

 𝑑𝑠, 𝑢𝑛
𝑒𝑥𝑎𝑐𝑡 = (

𝑅3

2𝐸𝐼
+

𝑅

𝑘𝐺𝐴
+

𝑅

2𝐸𝐴
) 𝜑 𝑠𝑖𝑛(𝜑)  (10) 

is used. To illustrate the convergence, the solution time consumed with respect to the error ||e|| is plotted 

in Fig. 2. The obtained results document the enormous time efficiency of isogeometric element over 

standard FEA. Moreover, it is obvious, that degree elevation can reduce the error while the computational 

time is kept low. 

 

Fig. 1: Circular cantilever beam: (left) problem setup, 𝐸 = 106, ℎ = 1.0, 𝑏 = 1.0, 𝜈 = 0.0,  

(centre) convergence of the normal displacement at the tip of the beam with cubic NURBS approximation 

using reduced integration (2 Gauss points per knotspan + 2 additional Gauss points per patch),  

(right) oscillations in shear strain when the reduced integration is used while the use of DSG matches the 

exact solution. 
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Fig. 2:Circular cantilever beam: Comparison of solution time in OOFEM with respect to  

the error of normal displacement using Timoshenko beam elements with cubic approximation (FEA)  

and isogeometric beam elements with different approximation orders. The numbers in the plot indicate 

the required number of degrees of freedom for specific simulation. 

5. Conclusions 

The isogeometric Timoshenko beam element has been implemented into existing finite element code. It 

has been shown, that the reduced integration does not remove the oscillations in strains, while the 

satisfactory results are obtained in case of use of DSG method.  

The significant time efficiency of isogeometric element over standard straight beam element has been 

proven. The performance of standard FEA could be enhanced using suitable curved beam element 

formulation, however such is not currently available in OOFEM. Also these formulations have usually 

some assumptions, such as constant curvature. On the contrary, isogeometric formulation enable exact 

description of arbitrarily curved geometries. 
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