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Abstract: This paper presents a stochastic approach to the free vibration of a solid body with nonlinear 

damping. Simulations were conducted in MATLAB and Anthill, using the Monte Carlo method. The results of 

practical damping tests were used and approximated to create a mathematical model of vibration. For the 

stochastic calculations, the input parameters of the mathematical model were assigned deviations using a 

histogram of probability distribution reflecting real operational situations. 
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1. Introduction 

This paper describes a solution for the technical free vibration of a solid body taking into account the 

influence of nonlinearity in viscous dampers. The calculations are based on motion equations of technical 

vibration including nonlinearity of damping via the mathematical expression of the characteristics of the 

damping elements. As it is very problematic to find a closed-form solution, the vibration is solved 

numerically. An integral part of the paper is a stochastic calculation of vibration incorporating variance in 

input values. The stochastic calculations are conducted using the Monte Carlo method in Anthill software. 

The resulting curves for the investigated parameters can find practical application in the optimization of 

products such as rotary machines, where the parameters of mass, centre of gravity position etc. change 

during operation. An ideal example is a washing machine, whose mass and centre of gravity vary 

depending on the quantity of water or clothing inside it, meaning that stochastic variance realistically 

represents the normal operation of the machine. Variables also include the characteristics of suspension 

springs or damping, as shown in the probability calculations. For more details see Brousil (1989), Juliš 

(1987), Timoshenko (1960) and Frydrýšek (2011), Frydrýšek (2012). 

2. Nonlinear free vibrations 

In order to determine the curves for the vibration of a body, it is necessary to specify the damping 

function 𝐹𝑏 [N], see Fig. 1b, which best corresponds with real data. The appropriate power function was 

specified in the following form: 

 𝐹𝑏(𝑣) = 𝑠𝑖𝑔𝑛(𝑣) ∙ 𝑝1 ∙ (|𝑣|)𝑝2, (1) 

where the coefficients 𝑝1 = 140 kg/s,  𝑝2 = 1/5 and 𝑣 [m/s] is the velocity of linear motion of the damper. 

It is very difficult, if not impossible, to find a closed-form solution for self-induced or externally-induced 

vibration with the given nonlinear damping function. Possible variants therefore include the linearization 

of the damping function or numerical calculation. From our observations, initial conditions and measuring 

follows the simplification based on the 1D model (i.e. the other 5 generalized coordinates can be 

neglected). 
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Fig. 1: a) Illustration of the solid body; b) comparison of derived damping function with real data. 

The advantage of numerical calculation is the option of using nonlinear damping characteristics, which 

better represent reality than the linearization of the damping function. The calculation assumes an even 

acceleration of motion at very short intervals dt = 0.0001 s. The solution is thus performed by iteration, 

with the initial displacement x0 [m] and the initial velocity v0 [m/s]. The relation for acceleration is 

derived from the motion equation as follows: 

 𝑎 =
−𝐹𝑘−𝐹𝑏

𝑚𝑡
=

−𝑘𝑐∙𝑥−𝑠𝑖𝑔𝑛(𝑣)∙𝑝1∙(|𝑣|)𝑝2

𝑚𝑡
   [

𝑚

𝑠2
] , (2) 

where 𝐹𝑘 [N] is the directional force of the suspension springs, 𝐹𝑏 [N] is the directional force of the 

dampers, 𝑚𝑡 [kg] is the mass of the body, 𝑘𝑐 [N/m] is the total suspension spring stiffness, and 𝑥 [m] is 

the trajectory of motion. 

After introducing the initial values x0 [m] and v0 [m/s], we obtain the initial acceleration a0 [m/s
2
]. It is 

then necessary to select an appropriate number of integration steps for the numerical solution dependent 

on the time step dt. 

The numerical calculation can be carried out using the loop “for” in MATLAB software; see Fig. 2:  

 

Fig. 2: Numerical calculation of vibration (MATLAB program). 
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The resulting curves for nonlinear vibration (trajectory, velocity and acceleration) are shown in Fig. 3. 

 

Fig. 3: Vibration with nonlinear damping: a) trajectory; b) velocity; c) acceleration. 

3. Stochastic inputs 

The stochastic approach (Monte Carlo method) is explained in the references Frydrýšek (2010), 

Frydrýšek (2011) and Frydrýšek (2012). 

In order to solve the vibration of a body with a certain probability value (the stochastic approach), the 

individual inputs were assigned probability distributions. This corresponds sufficiently with reality. Three 

basic parameters were used with the specified variance (𝑚𝑡 = 173.13 ± 0.8 kg, 𝑘𝑐 = 27199.603 ± 4 5.331 

N/m, 𝑥0 =0.03 ± 0.006 m). 

Probability distributions of the individual parameters can be depicted using histograms. For example, the 

histogram for the probability distribution of the total mass of the body is shown in Fig. 4a, and the 

histogram for suspension spring stiffness is shown in Fig. 4b. 

 
Fig. 4: Probability distribution histogram for: a) total mass 𝑚𝑡= 173.13 ± 0.8 kg;  

b) suspension spring stiffness kc= 27199.603 ± 415.331 N/m.  
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4. Stochastic outputs 

The resulting vibration curves for 3×10
6
 Monte Carlo simulations show a variance that is best illustrated 

in graphic form, e.g. depicting the time dependence of trajectory and velocity; see Fig. 5. 

 
Fig. 5: a) time dependence of trajectory; b) time dependence of velocity. 

5. Conclusion 

The data characterizing the damping of a body in motion were interpolated by means of a nonlinear 

function that was incorporated into the vibration calculation. As it was not possible to find a closed-form 

solution, the problem was solved numerically on a simple 1D model. The calculation used stochastic 

inputs (histograms) in the Monte Carlo method. The individual input parameters were assigned 

probability distributions corresponding with reality; the solution thus describes real variance. The 

advantage of using stochastic calculations is the ability to determine the interval of values in which an 

observed parameter occurs with a specified level of probability. In the case of the vibration of a body with 

rotating unbalance, this method brings significant benefits especially in determining the resonance area 

which must be overcome as rapidly as possible when the machine is starting or finishing its rotary 

motion. The calculations using Anthill software (Monte Carlo method) were conducted with 3×10
6
 

random simulations. The stochastic approach is a modern trend in science and technology which enables 

engineers to respect the reality of random parameters that are typical of random vibration. 
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