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Abstract: It is proved that the general frequency equation for plane-stress nonaxisymmetric disc motions 

tends for the first mode of propagation and for wavelengths very short when compared with the disc radius to 

the secular equation for Rayleigh waves. 

Keywords:  Frequency equation, Elastic disc, Rayleigh waves. 

1. Introduction 

The frequency equation for plane-stress nonaxisymmetric motions of an elastic disc (the disc boundary 

1r r  is assumed to be free of tractions) can be written as, see Cerv (1988), 
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The symbols y and   represent the dimensionless ratios 
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where 2c  and 3c  are the velocities of shear and dilatational waves, respectively. Poisson’s ratio is 

denoted by  , c  is the phase velocity. The parameter   is the dimensionless wavenumber and it can be 

written as 
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where 1r  is the disc radius,   is the wavelength. The symbol J  denotes the Bessel function of the first 

kind, order  . The frequency equation (1) has an infinite number of discrete roots 2/y c c , each 

corresponding to a particular mode of propagation. In the paper Cerv (1988) it is shown by means of a 

numerical procedure that the first mode which belongs to the first dispersion curve represents Rayleigh–

type waves. 

The aim of the paper is to find a simpler form of the equation (1) which could approximate the first mode 

of propagation for wavelength very short when compared with the disc radius. 
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2. Problem solution 

Let   be a sufficiently large number (κ = 2r1 /   1). For these short wavelengths ( 1r  being arbitrary 

but fixed) and for the first mode of propagation it holds, see Cerv (1988),  

 0 1 .y   (4) 

From (2) it also follows  

 0 1 .   (5) 

The equation (1) may be rewritten into the form 
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 (6) 

It is evident that estimates of the ratios of the Bessel functions in (6) have to be determined. 

2.1. Asymptotic representation of 1( ) / ( )J y J y   , 1( ) / ( )J y J y       

If   is any fixed and positive number and   is large and positive, the following asymptotic expansion of 

( sech )J    is valid, see Watson (1966), 
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where 
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we have for κ  1 
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From (8) it is clear that for 0  it holds 0 1y  , i.e., the condition (4) is fulfilled. The 

corresponding formula for  1( 1 )J y    can be then derived from (9). We obtain  
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Let ŷ  be a new variable which is given by 
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For any fixed , 0 1y y   , we can assign a number κ0  1 such that for every 0   we have 

 ˆ0 1 .y   (12) 
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Substituting (11) into (10) leads to 
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Denoting denominator in (13) as D one gets after a small algebra 
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Neglecting 
22 , 1  in D we receive for a sufficiently large   the asymptotic expression for D  
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Let P be the exponent in numerator of (13). For P we get 
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large  it may be written as 
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In view of the expressions (14) and (15), the approximation (13) may be rewritten in the form 
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and by using the approximation (9), 

we obtain 

  1
ˆ ˆ ˆ( ) ( ) exp arcsech .J y J y y       (16) 

Taking the expression (8) and using the following identity for the inverse hyperbolic functions, as may be 

seen in the book of Rektorys (1968), we get for arbitrary , 0 1z z    
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The substitution of (17) into (16) yields (for ˆz y ) 
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a simple algebra we have 
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The approximation (18) is true for a sufficiently large   and for any fixed ˆ ˆ, 0 1 .y y   It is evident 

that terms having the argument y   (see (6)) can be treated in the same manner. Therefore, one gets the 

similar approximation 
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Now we may return to the equation (6). If we substitute (18) and (19) (with original variable y ) into the 

equation (6), and then neglect small quantities as   , we obtain 
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The equation (20) may be considered to be an approximation of the general equation (1) (or (6)) for the 

first mode of propagation as .   In view of (2), the equation (20) may have the form 
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The equation (21) is the well-known secular equation for Rayleigh waves in isotropic elastic 2D 

continuum, see Graff (1975). Secular equations for Rayleigh waves in anisotropic media are studied in the 

paper by Cerv & Plesek (2013).  

3.  Conclusions  

It is proved that the general frequency equation (1) for plane-stress nonaxisymmetric disc motions tends 

to the secular equation for Rayleigh waves for the first mode of propagation and for wavelength very 

short when compared with the disc radius 1r . The former results reached in Cerv (1988) by a numerical 

procedure were corroborated by this study. 
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