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Abstract: A quarter model of a car suspension is the simplest possible model for entry analysis of a 

suspension behavior. However, such a model is very rough typically without modelled suspension 

nonlinearities or other effects influencing the model dynamics significantly. The paper proposes approach 

where a given suspension parameter is modelled as uncertain. It is consequently investigated the amount of 

the uncertainty of a given parameter which covers the given nonlinearity. The advantage of the approach is 

that the model with parametric uncertainty has still very simple structure possibly in a form of linear state-

space model with possible utilization in robust control design. 
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1. Introduction 

Multi-body model of a car suspension is in its simplest form represented by a quarter model with two 

degrees of freedom (Fig. 1) which is constituted by two ordinary differential equations. Such a model can 

be considered as entry level for analysis of a car suspension behavior. However, it contains neither 

nonlinearities in the suspension nor other significant influences such as wear and tear of suspension 

elements projecting directly into the behavior of the system. 

Introducing all of mentioned influences makes the model substantially more complicated which 

especially in a case of full suspension car model leads to increased computational demands and also to its 

lower readability. 

The possible way how to overcome complicated introducing of 

details influencing the dynamics of the model and yet keeping it 

simple is to utilize apparatus of modeling with given amount of 

uncertainty (Green, 1994). The model containing an uncertainty (for 

example in some of parameters such as stiffness or mass) has still 

quite simple structure, possibly in a form of state linear time 

invariant model. This allows working with the model efficiently. 

Let’s also note that models with uncertainty are generally utilized in 

robust control design (Gu et al., 2005). 

The goal of the paper is to find out whether the simple quarter 

model with parametric uncertainty defined for a given suspension 

parameter is able to cover a behavior of more complicated 

suspension model with a nonlinearity. In the positive case will be 

investigated needed amount of uncertainty of the parameter. 
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Fig. 1: Quarter model scheme. 
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2. Suspension model 

2.1. Quarter model 

The quarter model of the car suspension (Fig. 1) generally describing oscillating system with two degrees 

of freedom is defined by two well-known ordinary differential equations 

 
     

   
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where 
1m  means unsprung mass, 

2m  sprung mass, 
1k  stiffness of the tire, 

2k  stiffness of the coil spring, 

b  damping of the damper, 
1q , 

1q , 
1q  are kinematics quantities of the unsprung mass, 

2q , 
2q , 

2q  are 

kinematics quantities of the sprung mass and finally 
0q  is the excitation from the road surface. 

2.2. Model of damping nonlinearity 

The damping characteristic of a car damper is intentionally nonlinear. The main reason is the requirement 

of different intensity of the damping for the lifting and lowering of a wheel. Nonlinear damping 

characteristics used in the paper is obtained from (Pražák, 2006). It is linearized in the sense of least 

square method for obtaining of parameter b nominal value. Both, nonlinear and linear damping are shown 

in Fig. 2. 

 

Fig. 2:  Linear and nonlinear damping characteristics. 

2.3. Quarter model with parametric uncertainty 

For the sake of simplicity will be modeled as uncertain only parameter b , which means that  

 b b   , (2) 

where b  is the damping with parametric uncertainty, b  represents the nominal value of the damping and 

  is the uncertainty value (in this case as percentage of b ). In a same way can be defined uncertainties in 

other parameters. 

For more comfortable work with the model, it was transformed into state-space form 

 
x = Ax + Bu

y = Cx + Du
, (3) 

where  2 2 1 1

T
q q q qx  is vector of states, 

0qu  is the input to the system and  2 1

T
y q q  

represents outputs of the system (displacement of the both masses). Matrices A, B, C, D are defined as 
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2.4. Model of excitation from the road surface 

Input to the quarter model as an excitation from the smooth terrain is generated using function (4). The 

function is defined by summing several sinusoids of appropriate amplitude and frequency as follows. 

 
0 ( 0.143sin(1.75( 1.73)) 0.180sin(2.96( 4.98))

0.012sin(6.23( 3.17)) 0.088sin(8.07( 4.63))) / 5

q x x

x x

     

   
 (4) 

3. Numerical experiments 

The scope of numerical experiments was to compare output displacement of the sprung and unsprung 

mass of the linear quarter model (1) with the corresponding outputs of the model containing the nonlinear 

damping defined according to Fig. 2 (for results see Figs. 3 – 6) and consequently to compare outputs of 

the nonlinear model with outputs of the uncertain one. 

The values of parameters for the linear model were used as follows: m1 = 33 kg, m2 = 400 kg, 

k1 = 125000 N.m
-1

, k2 = 50000 N.m
-1

 and from the linearization obtained b = 849 N.s.m
-1

. 

  

Fig. 3:  Unsprung mass displacement, linear vs 

nonlinear (dashed) damping. 

Fig. 4:  Unsprung mass displacement, linear vs 

nonlinear (dashed) damping-detail. 

  

Fig. 5:  Sprung mass displacement, linear vs  

nonlinear (dashed) damping. 

Fig. 6:  Unsprung mass displacement, linear vs 

nonlinear (dashed) damping-detail. 

The difference (according to Kullback-Leibler) between the outputs of the linear and nonlinear model is 

approximately 22.4 %, thus the linear model can be in some situations insufficient. The following 

simulation results (Figs. 7 and 8) compare outputs of the model with uncertainty on the damping 

according to (3) with the model containing the nonlinearity in the damping. The uncertainty was changed 

from ± 10 % to ± 100 % of b, the increment was 10 %. 
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Fig. 7:  Unsprung mass displacement, samples  

of the model with uncertainty ±100 % vs nonlinear 

(dashed)-detail. 

Fig. 8:  Sprung mass displacement, samples  

of the model with uncertainty ±100 % vs nonlinear 

(dashed)-detail. 

The difference between outputs of the uncertain model samples (50 samples for every 10 %) and 

nonlinear model was evaluated by Kullback-Leibler method and it is represented by following boxplots 

(Figs. 9 and 10). 

  

Fig. 9:  Difference between q1 of the uncertain  

model samples and nonlinear model. 

Fig. 10:  Difference between q2 of the uncertain  

model samples and nonlinear model. 

4. Conclusions 

The difference between outputs of the linear quarter model and the model with nonlinear damping is 

approximately 22.4 % thus in some cases might be the linear model insufficient. The introduced 

parametric uncertainty of the damping was changed gradually by 10 % from ±10 % to ±100 % of b. It 

was investigated that outputs of the nonlinear model will be covered by outputs of the uncertain model for 

the uncertainty at least ± 40 % (for q1), respectively at least ± 70 % (for q2). Such a model with modeled 

uncertainty is able to cover behavior of the nonlinear model and due to its simple structure it is 

computationally efficient and suitable for consequent robust control design. In a similar way can be 

modelled different types of nonlinearities or other influences such as wear and tear of the elements which 

can be difficult to model or predict in classical way. 
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