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Abstract: The problem of optimal repair and/or optimal reinforcement of bar structures by introduction of 

new elements is considered in this paper. The corresponding optimization problem is formulated as the 

maximization of the global stiffness increment induced by repair (reinforcement) under the cost constraint. 

The potential energy is assumed as the measure of the global structure stiffness, while the cost constraint 

corresponds to condition imposed on the maximal cost of the repair and/or reinforcement. The method of 

determination of the structure global stiffness increment induced by finite topology modification is proposed 

and the optimization algorithm is presented. Numerical examples of optimal repair and/or reinforcement of 

some structures illustrate the theoretical considerations.  

Keywords: Bar Structures, Optimal Repair, Optimal Reinforcement, Finite Topology Variations, 

Global Stiffness. 

1. Introduction 

Global stiffness and load capacity of a structure due to operation of certain factors, for example 

atmospheric, biological, chemical, etc., may significantly decrease. Moreover, need of taking into account 

additional loads sometimes occurs. In these and similar situations appears necessity of repair and/or 

reinforcement of the structure in the current state.  

 In the present paper, at first general approach for determination of finite increments of the global 

stiffness caused by finite topology modifications (cf. Mróz and Bojczuk, 2003) is adjusted to the bar 

structures. Next, assuming that the structure is weakened or damaged, the problem of optimal repair or 

reinforcement is formulated. The method of solving this problem using finite topology modifications 

corresponding to introduction of substructures or structural elements is presented. 

The hitherto existing papers usually apply probabilistic approach to the damage processes and focus 

attention on optimal inspection and maintenance (cf. Jido et al., 2008 and Ortega-Estrada et al. 2013), in 

contrary to this paper, which is devoted to optimal repair or optimal reinforcement of weakened 

structures.  

2. Formulation of problem of optimal repair (reinforcement)  

The problem of optimal repair and/or optimal reinforcement of the fixed primary structure in order to 

maximize global stiffness, admitting finite topology modifications, can be presented in the form 

 max    subject to   0CC  , (1) 

where   denotes increment of the potential energy caused by introduction of stiffening substructures 

or structural elements subjected to optimal design, C  is the global cost of the structure after this finite 

modification and 0C  denotes the upper bound on the global cost. Here, the potential energy   is 

assumed as the measure of the structure global stiffness. 
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3. Determination of finite changes of global stiffness  

Let us consider, on the example of a frame, determination of finite increment of the potential energy 

induced by finite topology modification. We assume that the primary structure 1 will be connected with a 

new additional substructure 2 (Fig. 1), which position and stiffness parameters are the design variables. In 

view of Betti’s reciprocity theorem separately for the structures 1 and 2, before and after connection, we 

get 
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wu u  are the vectors of internal forces and generalized displacements of the structures at 

the connection point. Now, the increment of the potential energy can be presented as follows  
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where ][ 0
C

u  denotes discontinuity of generalized displacement vectors at the connection point. Taking 

into account that   0uuu  CCC 12  and CCCC PDuu 1
0
11  , CCCC PDuu 2

0
22  , we get that 

CCC
PDu ][ 0 , where CCC 21 DDD   is the sum of the local compliance matrices related to the 

interface. Therefore, finally the equation (3) can be rewritten as follows (cf. Mróz and Bojczuk, 2003) 
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Fig. 1: Connection of a primary structure 1 with reinforcing substructure 2: 

a) the structures before connection; b) the structures after connection. 

So, the stiffness increment depends on, easy to determine, vector of initial displacements discontinuity 

][ 0
C

u  and inverse of the matrix CD . In order to calculate CD , at first stiffness matrices of the 

primary structure and additional substructure 1K , 2K  and their inverses 1
11
KD , 1

22
KD  are 

determined. Now C1D , C2D  can be easily specified as the submatrices of 1D , 2D  of considerably 

smaller dimensions. It is important to notice that during optimization matrices 1K , 1D  do not change, so 

only 2K and 2D  should be separately calculated in each step of optimization.  

4. Optimal design algorithm 

In order to determine optimal repair or reinforcement by introduction of an additional substructure the 

following algorithm, which combines FEM analysis and any gradient optimization method, can be used: 

1º Determine plan of the primary structure repair or reinforcement.  
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2º Using information from the topological derivative (cf. Bojczuk and Mróz, 1998; Mróz and Bojczuk, 

2003) or by direct decision of designer, choose, under the constraint of the maximal cost, initial 

location and stiffness of the finite reinforcing modification. 

3º Applying any gradient optimization method, where   is calculated from (4), as it was described in 

Section 3, determine optimal values of the design parameters for the substructure. 

4º Terminate the procedure or propose another method of repair or reinforcement and return to 1º. 

5. Illustrative examples 

Numerical examples of optimal repair and reinforcement of bar structures presented in this Section 

illustrate applicability and usefulness of the proposed approach. 

5.1. Example 1: Optimal repair (reinforcement) of symmetric truss 

The symmetric truss made of steel, which global stiffness is not sufficient, should be reinforced. All bars 

of the truss have cross-section of circular tube shape and their areas respectively are 24
1 m108 A , 

24
2 m105 A , 24

3 m103 A  (Fig. 2). It is assumed that reinforcement can be performed by adding 

symmetrically located one or two pairs of new bars, but only in tension.  
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Fig. 2: Static scheme of the truss. 

The problem of optimal design has the form (1), where it is assumed that the cost is proportional to the 

volume and the volume of the additional bars should not exceed 32
0 m10V . Due to symmetry only 

half of the truss is analyzed. Possible initial locations of new bars are chosen, as these lines between two 

nodes, so far not connected by bars, where virtual strains are positive (because of tension) and the biggest 

(cf. Mróz and Bojczuk, 2003). During optimization optimal pairs (pair) of bars are selected and their 

cross-section areas are determined.  
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Fig. 3: The optimal designs. 

The primary structure (Fig. 2) has the potential energy kJ 200.2 . The optimal designs are shown in 

Fig.3. In the case of introduction of two pairs of bars (Fig. 3a) the potential energy increased to 

kJ 929.1 and the cross-section areas of the bars are 24
4 m1024.6 A  and 24

5 m1049.3 A  

respectively. When only the one pair of bars is introduced optimal solution is shown in Fig. 3b. In this 

case the potential energy of the truss increased to kJ 948.1 . The cross-section areas of the pair of 

bars are 24
4 m1018.11 A . 

5.2. Example 2: Optimal repair (reinforcement) of frame 

Now, let us consider frame structure made of steel, which is shown in Fig. 4. Both, columns and cross-

beam are double-T bars of cross-section areas 22 m10A . It is assumed that the frame can be 

reinforced by adding two or one column. The optimization problem consists in maximization of the total 

potential energy increment under cost constraint. Here we assume that the cost is proportional to material 

volume and the maximal volume of additional columns is 32
0 m105 V . The design parameters are 
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locations of columns is  and their cross-section areas iA . Here, two types of connections of additional 

columns to foundation and to the cross-bar denoted by k  are considered, namely either pinned or fixed.  
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Fig. 4: Static scheme of the frame 

The primary structure (Fig. 4) has the potential energy kJ 45.25 . For the case of introduction of 

two columns, these columns are initially located symmetrically in relation to the point of cross-beam 

maximal deflection, while the optimal solution is shown in Fig.5a. Tab.1 contains optimal values of the 

design parameters and potential energy for three types of optimization problems considered here, namely 

introduced columns are simply supported, clamped or clamped but with equal cross-section areas. In the 

case of introduction of one column (Fig. 5b), this column is initially located at the point of the maximal 

deflection of cross-beam (cf. Bojczuk and Mróz, 1998). Optimal values of design parameters are in the 

fixed case: m 22.8s , kJ 8335.0 , and in the pinned case: m 35.8s , kJ 8489.0 . 

k

b)
s

k

s
s

k

a)

50kN/m

2

A1

k

k

25kN/m

1

A

50kN/m

2

k

25kN/m

A

 

Fig. 5: Optimal design of the frame: a) the case with two additional columns,  

b) the case with one additional column  

Tab. 1: Optimal values of design parameters 

Connection type 
Design parameters 

s1[m] s2[m] A1·10-4[m2] A2·10-4[m2]  Poten. en.[kJ] 

fixed 6.21 10.69 43.1 56.9 -0.3349 

pinned 6.18 10.68 42.8 57.2 -0.3353 

fixed, constant A1 , A2 6.40 10.82 50 50 -0.3375 

6. Conclusions 

The problem of optimal repair and/or reinforcement of bar structures in order to maximize global stiffness 

under cost constraint is analyzed in this paper. The algorithm of optimization, in which, initially, finite 

topology variations corresponding to new elements and substructures are introduced into the structure, is 

presented and successfully applied in some illustrative examples. The formulated approach can be also 

used for other types of finite modifications like replacement or removal of structural elements.  
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