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Abstract: In the paper, the analysis of damping parameters for vibration reduction of buildings with use of 

optimization algorithm is presented. Optimal values of damping coefficients are determined at fundamental 

structural mode of shear buildings in order to attain desired added damping ratios. The cost function is 

defined as the sum of damping coefficients of the dampers to be minimized. Proposed optimization problem is 

solved by using three different numerical algorithms that are namely: Simulated Annealing, Nelder Mead 

and Differential Evolution algorithms, respectively. Numerical example is presented to prove the validity of 

the proposed method. The changes of optimal distributions of the dampers with respect to target damping 

ratios and structural periods in a particular range are investigated for two-story shear building model. The 

numerical results show that the proposed damper optimization method is easy to apply and efficient to find 

optimal damper distribution for a target damping ratio. 

Keywords:  Optimal dampers, Target damping ratio, Added dampers, Optimal passive control, 

Optimal design of dampers. 

1. Introduction 

The concept of supplemental dampers within a structure suggests that part of the input energy will be 

absorbed, not by the structure itself, but rather by supplemental damping elements. The usage of the 

added dampers can increase the damping level of buildings ranging from 20 % to 40 %. 

The effects of variations support member stiffness of dampers upon the optimal damper allocation 

problem were investigated (Takewaki and Yoshitomi 1998). A procedure for obtaining the optimal 

stiffness and damping distributions based upon the optimality criteria was presented by Takewaki (1999a, 

1999b). An optimal damper placement method was proposed to minimize the dynamic compliance of a 

building frame (Takewaki 2000a, Shukla et al. 1999, Fujita et al. 2010, Aydin et al. 2007) and beam 

(Takewaki 1998). A new objective function for finding optimal size and location of the added viscous 

dampers was proposed based on the elastic base moment in planar steel building frames (Aydin 2012). In 

this studies, a cost function that is the sum of damping coefficients of the added dampers is minimized to 

find optimal damping coefficients of the added dampers under a specified added damping ratio and both 

lower and upper bounds of each damping coefficient of the added dampers. Differential Evolution, Nelder 

Mead and Simulated Annealing are used to solve the simple optimization problem. Moreover, in the 

numerical examples, the effects of the changes of desired target damping ratio and the period of the 

structures above the optimal damper designs are investigated. 

2. Theoretical background of the analysed problem 

For the analysed model the equation of motion can be written as: 

 𝑴�̈�(𝑡) + (𝑪 + 𝑪𝒂𝒅)�̇�(𝑡) + 𝑲𝒖(𝑡) = −𝑴𝒓ü𝑔(𝑡) (1) 

where M, C and K present mass, structural damping and stiffness matrices, respectively �̈�(𝑡),
�̇�(𝑡) and 𝒖(𝑡) are acceleration, velocity and displacement vectors, respectively. The r denotes influence 
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vector that all elements is equal to one. ü𝑔(𝑡) is defined as ground acceleration. The structural damping 

matrix, C can be calculated in proportion to only mass matrix, only stiffness matrix or linear combination 

of mass and stiffness matrices. It is given as 

 𝑪 = 𝛼𝑴   (2), 

 𝑪 = 𝛽𝑲 (3), 

 𝑪 = 𝛼𝑴 + 𝛽𝑲     (4), 

where  𝛼 and  𝛽 are generally calculated in terms of first normal mode of vibration in Eqs. (2) - (3). In 

general, 𝛼 and 𝛽 in Rayleigh damping matrix, given in Eq. (4), are determined by using the first and 

second normal modes of vibration. While this is called as proportional damping matrix, Cad is the non-

proportional damping matrix that should be designed optimally to minimize an objective. The matrix, Cad 

can be decomposed into corresponding added viscous dampers and is written as  

 𝑪𝒂𝒅 = 𝑐1𝑪𝟏 + 𝑐2𝑪𝟐 + ⋯ + 𝑐𝑛𝑪𝒏 (5), 

where 𝑐𝑖 (𝑖 = 1, … , 𝑛) corresponds to the damping coefficient of i
th 

added damper; and 𝑪𝑖 (𝑖 = 1, … , 𝑛) 

denotes the location matrix of the i
th
 added damper. Moreover, the location matrix is also equal to the 

partial differential of Cad with respect to i
th
 added damping coefficient of dampers as 

 𝑪𝑖 =
𝜕𝑪𝑎𝑑

𝜕𝑐𝑖
 (6). 

Two ends of the viscous dampers have different velocity since one end is attached to one building storey 

and the other end to a different storey. These devices produce damping forces in proportion to relative 

velocity between each one of the ends. These elements achieve the energy dissipation during an external 

vibration such as a wind and an earthquake excitation. The damping force of a linear viscous damper is 

given as 

 𝐹𝑎𝑑 = 𝑐𝑎𝑑 . �̇� (7),  

where 𝑐𝑎𝑑, �̇� denote the damping coefficient of manufactured viscous damper and relative velocity 

between each one of the ends of damper, respectively 

In the fundamental mode, the damping ratio is calculated as follows 

 2𝜁1𝜔1 =
𝝓𝟏

𝑻(𝑪+𝑪𝒂𝒅)𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

=
𝝓𝟏

𝑻𝑪𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+
𝝓𝟏

𝑻𝑪𝒂𝒅𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (8),  

where  𝜁1 denotes damping ratio after dampers are inserted to the structure, 𝝓𝟏 is the normalized 

fundamental mode vector and 𝜔1 is the undamped natural circular frequency of the model structure. The 

first term on the right side of Eq. (8) covers proportional damping matrix, and therefore there are no 

couplings between first mode and any of the other modes. This situation is expressed as 

 
𝝓𝟏

𝑻𝑪𝝓𝒊

𝝓𝟏
𝑻𝑴𝝓𝒊

= {
2𝜁𝑠𝜔1 𝑖 = 1

0 𝑖 ≠ 1
 (9),  

where 𝜁𝑠 denotes structural damping ratio for the fundamental mode. The second term on the right side of 

Eq. (8) include non-proportional damping matrix. However, only for purposes of a simplified design it is 

convenient to assume that 

 
𝝓𝟏

𝑻𝑪𝒂𝒅𝝓𝒊

𝝓𝟏
𝑻𝑴𝝓𝒊

= {
2𝜁𝑎𝑑𝜔1 𝑖 = 1

0 𝑖 ≠ 1
 (10),  

where 𝜁𝑎𝑑 denotes added damping ratio for the fundamental mode. The Eq. (8) can be rewritten using 

Eqs. (9) - (10) as follows  

 2𝜁1𝜔1 = 2(𝜁𝑠 + 𝜁𝑎𝑑)𝜔1,  (11), 𝜁1 = 𝜁𝑠 + 𝜁𝑎𝑑 (12).  

Structural damping ratio 𝜁𝑠 is generally assumed to be constant as 0.02 in steel structures or 0.05 in RC 

structures. The parameter 𝜁1 denotes the desired value of the damping ratio when the dampers are inserted 

to the structure. The parameter𝜁𝑎𝑑, which occurs due to the effects of the added dampers, is the added 

damping ratio. The desired 𝜁𝑎𝑑 is determined from Eq. (12), if the structural damping ratio and the 

desired total damping ratio are known. Therefore, the desired added damping ratio is calculated as 

 𝜁𝑎𝑑 = 𝜁1−𝜁𝑠 (13). 

The Eq. (8) can be rewritten for only added damping ratio as  

 2𝜁𝑎𝑑𝜔1 =
𝝓𝟏

𝑻𝑪𝒂𝒅𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

= 𝑐1
𝝓𝟏

𝑻𝑪𝟏𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+ 𝑐2
𝝓𝟏

𝑻𝑪𝟐𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+ ⋯ + 𝑐𝑛
𝝓𝟏

𝑻𝑪𝒏𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (14), 
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where the coefficients (𝜇𝑖) of the ci can be written as follows 

 𝜇𝑖 =
𝝓𝟏

𝑻𝑪𝒊𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (15).  

The formula of the desired added damping ratio for fundamental mode is written as below using  

Eqs. (14) - (15) 

 𝜁𝑎𝑑 =
1

2𝜔1
(𝜇1𝑐1 + 𝜇2𝑐2 + ⋯ + 𝜇𝑛𝑐𝑛) =

1

2𝜔1
∑ 𝜇𝑖𝑐𝑖

𝑛
𝑖=1  (16). 

In this study, design variables are considered as the damping coefficients of the added dampers. Optimal 

damper problem is based on minimization of total cost of the dampers that is expressed as the sum of 

damping coefficients of the added dampers which is given as 

 Min. 𝑓 = ∑ 𝑐𝑖
𝑛
𝑖=1  (17). 

The cost function to be minimized in Eq. (17) indicates total damping coefficient of the added dampers. 

Eq.(16) can be rewritten as an equality constraint in terms of  the added damping ratio  

 𝜁𝑎𝑑 =
1

2𝜔1
(𝜇1𝑐1 + 𝜇2𝑐2 + ⋯ + 𝜇𝑛𝑐𝑛) =

1

2𝜔1
∑ 𝜇𝑖𝑐𝑖

𝑛
𝑖=1  (18), 

where 𝜁𝑎𝑑 is a fixed damping ratio that can be given as a desired damping ratio. The fundamental natural 

circular frequency and the parameter 𝜇𝑖 are known parameters from the vibration characteristics of the 

structure. Both objective function and equality constraint are the linear function of the design parameters.  

Taking into account the inequality constraints on the upper and lower bounds of the damping coefficients 

of each added damper gives the following 

 0 ≤ 𝑐𝑖 ≤ 𝑐�̅�    (i=1,2,…,n) (19),  

where �̅�𝑖is the upper bound of damping coefficient of the damper in i
th
 story. In practical applications, a 

damper capacity and size which corresponds to the upper bound of the added damper should be restricted 

because of commercial and manufacturing limitations. 

3. Numerical analysis and discussion 

Analysed 2-storey shear building model such as linear manufactured viscous dampers that are added to 

each story is shown in Fig. 1. 

 

 

 

 

 

 

 

 
 

Fig. 1: a) 2-storey shear buildings with supplemental dampers; b) Variation of minimum values  

of cost function according to period of the structure for different added damping ratios. 

The three various numerical minimization methods such as Differential Evolution, Nelder Mead and 

Simulated Annealing, which are well known in the optimization literature, are used to solve the 

optimization problem. The aim of using these three optimization methods is to verify the results obtained 

from a method with the other methods. The used optimization methods in the numerical minimization 

module of the Mathematica 5.0 (2003) are expressed in the following paragraph.   

Optimization problem is applied to 2-story shear building to find optimal damping coefficient of added 

dampers under the upper and lower limits of the design variables and the target value of the damping ratio 

in the first mode. The target damping ratio is considered as ad = 0.20. The change of the period depends 

on the structural stiffness. The story stiffness coefficients are equal in all stories. The stiffness coefficient 

is selected such that the period is fixed to 1.04305 s. For this period and target added damping ratio 

ad = 0.20, the optimization is performed. While the period of the structure is decreased by increase of the 
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stiffness, optimization is performed using three different method for fixed damping ratio ad = 0.20. The 

target added damping ratio is taken as 0.02, 0.05, 0.10, 0.20, 0.15, 0.25 and 0.30, respectively. For each 

one of the added damping ratios, optimization is performed for these cases and the variations of the 

optimal damping coefficients (c1, c2) according to period of the structure are plotted in Fig. 2.  

  

Fig. 2. The variation of optimal values of c1 and c2 according to period of the structure  

for different added damping ratios. 

The variations of the minimum values of cost function for different added damping ratios are also 

presented in Fig. 1. It can be seen that the increase of the period results in decrease of the minimum 

values of the cost function. 

4. Conclusions 

A simple optimization method is proposed to find optimal damper placement. The optimization problem 

is constructed based on minimizing the sum of the damping coefficients of the added dampers under a 

target added damping ratio in the first mode and both upper and lower bounds of the added dampers. Both 

the cost function and the constraint functions are linear function of the design variables. Three different 

numerical minimization methods are used for justification in this study. The results obtained from 

minimization methods match with each other. The effects of variation of the fundamental period and the 

target added damping ratio above the optimal designs are also investigated. The numerical results reveal 

that the increase of the fundamental period results in the decrease of cost function value for a fixed upper 

bound of added damping coefficient and a specified target added damping ratio. The more added damping 

ratio is needed, the more the cost function value occurs. In the numerical examples, the upper bound of 

the added damping coefficients is taken as a fixed value. The numerical results state explicitly that the 

proposed method is effective in order to minimize the total damping coefficient and to attain a desired 

damping ratio in the first mode.  
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