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Abstract: In the paper, theories of normal and oblique shock waves will be presented. Principles of fluid 

mechanics and thermodynamics of an ideal gas are applied. Properties of shock waves will be discussed in 

connection with ambiguous solutions. Entropy analysis enables to determine conditions of occurrence of 

shock waves. An optimization task for shock wave parameters is formulated and solved. 
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1. Introduction 

Theory of shock waves is introduced in many textbooks of gas dynamics, for instance (Shapiro, 1953). 

Primary theoretical works on shock waves were achieved (Rankine, 1870 and Hugoniot, 1887). 

Experimental evidence of existence of shock waves was carried out in the year 1886. Mach and Salcher 

(1887) published the schlieren picture (see Fig. 1) where shock waves upstream and downstream of the 

projectile in flight are evident. Further experimental and theoretical investigations made possible 

development of theory of shock waves, for instance (Prandtl, 1907). The shock wave theory enables to 

solve parameters of fluid flow on shock waves. For numerical solutions in aerodynamic practice, 

auxiliary (subsidiary) tables (AMES Research Staff, 1948) and diagrams (AMES Research Staff, 1948) 

were prepared. Modern internet aids offer accessible calculators, for instance (Compressible 

Aerodynamic Calculator, 2014). A detail historical overview of investigations of shock waves is given in 

the book (Krehl, 2009). 

The aim of this paper is to present theoretical approach and description of flow structure in experimental 

results at occurrence of shock waves. 

 

Fig. 1: Schlieren picture of the projectile in flight. 
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2. Shock wave theory 

Shock waves are adiabatic abrupt physical phenomena. They are surfaces with discontinuity of fluid flow 

parameters. Basic theoretical approach is based on balances of mass, momentum and energy fluxes. The 

condition of adiabatic process is defined by constant value of total specific enthalpy h01 = h02 = h0.  

A control volume is chosen very thin in a part of the shock wave.  

In following paragraphs, only substantial knowledge will be presented.  

2.1. Normal shock wave theory 

The scheme of control volume for normal shock wave is shown in Fig. 2. Following system of equations 

is based on balance of mass 

 

Fig. 2: The scheme of control volume for normal shock wave. 
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and equation of state of an ideal gas 
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One of solutions of the system Eqs. (1 – 4) is Rankine-Hugoniot equation – relation between ratio of 

pressures downstream p2 and upstream p1 and ratio of densities downstream ρ2 and upstream ρ1 of the 

shock wave 
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which is depicted in diagram in Fig. 3 in comparison with isentropic relation .const
p


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 From the 

system of Eqs. (1 – 4) it is also possible to derive dependence of ratio of pressures downstream p2 and 

upstream p1 of shock wave on upstream Mach number M1 
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Prandtl relation for values of non-dimensional velocities upstream 1 and downstream 2 of a normal 

shock wave is well-known 

 121  . (7) 
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Fig. 3: Dependence of ratios of pressures and densities, Eq. (5). 

2.2.  Oblique shock wave theory 

The scheme of control volume for oblique shock wave is shown in Fig. 4 where geometric parameters of 

the shock wave angle  and the deflection angle  are depicted. Velocity vectors v1 and v2 are 

distinguished. Their normal vn and tangential vt components are used in balances of mass and momentum. 

The system of equations consists of balances mass, momentum in normal direction, momentum of 

tangential direction, energy and equation of state. 

 

Fig. 4: The scheme of control volume for normal shock wave. 

The solution of the system confirms that Rankine-Hugoniot equation, Eq. (5), holds also for oblique 

shocks. Ratio of pressures depends not only on upstream Mach number M1 but also second independent 

variable – the shock angle  - appears 
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Prandtl equation for oblique shock waves is not so easy as in the case of normal shock waves, Eq. (7), but 

beside normal velocity components v1n and v2n tangential velocity component vt1 = vt2 = vt takes place 
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where a  is critical speed of sound. For computation of the deflection angle δ, following equation was 

derived 
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From working formulas for parameters of oblique shock wave different tables and charts were prepared. 

The shock polars in hodograph plane proved to be very useful. In Fig. 5 shock wave polars are depicted 

and sonic conditions downstream of the oblique shock wave are indicated. 

 

Fig. 5: Shock wave polars in hodograph plane, = 1.4. 

3.  Entropy analysis of shock waves 

From aerodynamic equations for oblique shock waves and from thermodynamic relations it is possible to 

derive relation for entropy increase 
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The analysis of the Eq. (11) confirms that the existence of shock waves can be only in supersonic flow 

field of an ideal gas, M1 > 1. For oblique shock waves the shock wave angle is in the region 

2
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M
. When  is positive the oblique shock wave is left-running. If it is negative 

the oblique shock wave is right-running. Maximum value of the deflection angle max on oblique shock 

waves exists and can be derived as a function of Mach number M1 upstream of the oblique shock wave 

 1max0 M  . For given value of the deflection angle  two solutions of parameters of oblique 

shock wave exist. The dividing regime corresponds to the condition maximum of the deflection angle. 

4.  Optimal parameters of oblique shocks 

Achieved knowledge on parameters of shock waves enables to formulate and solve optimization tasks. 

One of them has the criterion of optimum minimum entropy increase for given deflection angle  

 = const., Šafařík (1993) 
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The solution of the optimization task offered interesting results 

the optimal Mach number M1opt upstream of the oblique shock wave 
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the optimal shock wave angle 
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In Fig. 6, parameters for maximum deflection angle and for sonic flow downstream of the oblique shock 

wave (see in book by Maršík, 2015) are compared with optimal parameters of oblique shock waves. 

 

Fig. 6: Diagram the deflection angle  versus the shock wave angle ,  = 1.4. 

5.  Conclusions 

High-speed flow investigations have to prepare new knowledge and data for reliable and effective design 

and operation of machines. Classical gas dynamics proposes important and interesting topics for study of 

compressible fluid flow. Their solutions can give new experience and instruments for understanding of 

complex processes in flow systems. 
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