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LAMINATED GLASS STRUCTURES IN BENDING:
TIME/TEMPERATURE-DEPENDENT FINITE ELEMENT MODELS

A. Zemanovd, J. Zeman, M. Sejnoha

Abstract: The lamination of glass sheets with ductile intgel® significantly changes the post-fracture
response of glass structures and increases théatysalhe aspects important for the modeling ofinated
glass structures are: (i) heterogeneity in mateparameters of glass and polymer foil (the ratioshkar
moduli exceeds 1,000), (ii) time/temperature-depahdoehavior of polymer foil, and (iii) effects of
geometric non-linearity as a result of slenderneésaminated glass. One of the modeling approadkes
finite element formulation based on refined themrien the proposed model, kinematics relations are
formulated for each layer individually and the catipility on the interfaces of layers is ensurea vi
Lagrange multipliers with the meaning of forcesdiof the neighboring layers perfectly bonded. The
comparison of models with different assumptionpagormed in this contribution: formulation based o
large deflection or finite strains theories for kimatics, and constitutive assumption of constark bu
modulus or constant Poisson’s ratio in relations fone/temperature-dependent behavior of polymeric
interlayer. The developed models were verified agfathe detailed finite element model in ADINA and
compared with a simplified model assuming elastibdvior of polymer foil with the secant shear madul
set according given temperature and loading time.

Keywords: Laminated glass, Finite element method, &grange multipliers, Generalized Maxwell
model, Williams-Landel-Ferry equation.

1. Introduction

Through continuous improvements in production tetbgies over the last decades, glass elements have
attained a more structural role. The laminationgté#ss sheets with ductile interlayers significantly
changes the post-fracture response of glass stesctnd increases their safety. The interfaciabsioh
between glass and the interlayer is ensured byinge&n combination with the application of high
pressures, resulting in high gluing forces of cleainnature. Several types of interlayers have fahed

use in practice, for example polyvinyl butyral iaily used for automotive glass or ionoplast polyme
providing increased safety and security in stradtupplications. From car industry applications,
laminated glass has expanded into the buildingtogections, such as roof and floor systems, staggas

or pedestrian bridges, and the application arepskegpanding in response to the pursuit of eveatgre
transparency in modern architecture.

2. Overview and methods for modelling

An extensive overview of the current state-of-thieka structural glass design and engineering can b
found e.g. in (Louter et al., 2014).

2.1. Behavior of laminated glass

What makes the modeling of laminated glass strastumontrivial? The common denominator is their
heterogeneity. Namely, (i) polymer foils are mucbrencompliant than the glass layers, rendering the
assumptions of conventional beam or shell thedoelminates inapplicable, (ii) due to the polyneit
incorporation, their mechanical response is seestth load duration, temperature, strain, and rstratie
e.g. (Delincé, 2014), and (iii) laminated structudisplay effects of geometric non-linearity agsuit of
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their slenderness. These phenomena have to be emepied with dynamic effects, arising from, e.g.,
impact of small projectiles in windstorms or fallaohuman body — the so-called low-velocity impihett
is the focus of our future research.

2.2. Overview of methods

Extensive research into the mechanical respondantihated glass structures has been undertaken to
understand their unfractured behavior. Single-laaroaches, such as the concept of effectivertbisk
approximate the behavior of a unit by an equivalenogeneous one. Their main advantage is their
simplicity and satisfactory accuracy, but they difficult to extend for the geometrically non-lirea
effects. The same arguments hold for the closad-feolutions for laminated glass plates. The most
common approach is based on fully resolved 2D orfille element models, which provide accurate
response, but lead to expensive computations becafisthe large thickness-to-span ratio. The
computational cost can be reduced by solid-shethehts, e.g. (Fréling and Persson, 2013), or réfine
beam and plate formulations, e.g. (Zemanovéa, 201%bg¢ latter approach builds on the variational
formulation of refined plate theories, in which @épéndent kinematics is considered for each laydr an
the inter-layer compatibility is enforced by thegkange multipliers when minimizing the total eneafy

the system. We adapted this concept to developiefti and accurate finite element formulations for
large-strain and large-deflection analyses of latdd beams and plates with temperature-dependent
viscoelastic interlayer via time-incremental enemgjpimization. In this contribution, we focus on deds

for laminated glass beams.

3. Finite element formulations based on refined theods

3.1. Assumptions

The proposed geometrically nonlinear finite elemewtdels of laminated glass beams, derived from a
refined plate theory by Mau (1973), assume planasscsections of individual layers but not of theole
laminated glass unit. We treat each layer indepsthdand enforce the compatibility by the Lagrange
multipliers. This approach could capture possildichination, however a perfect adhesion is supposed

3.2. Kinematics

For kinematics equations, we used two approachies.fifst of them, the Reissner finite-strain beam
theory (FS), is more general, while the secondisri®gsed on von Karman assumptions (VK) of large
deflections and small in-plane displacements atatioms.

3.3. Constitutive relations

The main engineering property relevant to the caitpdehavior of the units is the shear-stressugers
shear-strain characteristics of the soft interlayBne shear modulus of the polymer interlayer is
experimentally determined as a function of duratibfoading and temperature, see (Pelayo et alL.3R0
For that reason, the behavior of polymer foil reelrly viscoelastic, while glass is an elastic mialtén

our models. Two different formulations assumingstant value of bulk modulus (FS and VKy) or
Poisson’s rati@ (FS and VK,) were proposed. The temperature dependence is talkeaccount by the
time-temperature superposition principle; we emplihye Williams-Landel-Ferry equation. These
viscoelastic approaches are compared with a sieglihodel assuming elastic behavior of polymer foil
with the value of the shear modulus set accordingngtemperature and loading time.

3.4. Solution procedure

The geometrically nonlinear solver from (Zemanotéak, 2014a) was extended to the incremental
viscoelasticity formulation. The sought displaceméarcrement “'or and the vector of Lagrange
multipliers “*A are determined from the linearized system

ke kT |[ k+ kg _
K C 5r - _ fint fext . (1)
kC O k+1/] kC
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The stiffness matrix fok-th iterative sterﬂz is composed of independent stiffness matricesyafrtaand

therefore exhibits block structure. MatfiC and vector“c implement the compatibility conditions for
displacements on the interface of neighboring kyEor finite-strain formulation, these matricesééo
be calculated for each iterative step, whereasséor Karman assumption§; is still the same matrix

composed of constant values arfit is the zero vector. External nodal forcég, correspond to the

loading of structure for given time step ahcﬁm has the meaning of internal nodal forces Keih
iterative step. The notatiofK and kﬁnt is used to emphasize that these quantities asgnieed for
interlayer using the effective values of Young'sdulus (or shear modulus) and include the additional
terms due to relaxation effects.

4. Results, comparisons and verification

The most common laminated beams with three layges4/PVB/glass) are considered in this section.
We compare the proposed models for two exampledfited-end beam and the simply-supported beam.
In practical applications, the laminated glass elei® are not perfectly fixed or simply-supported,;
therefore these two cases are limits of the reppe conditions. The beams are loaded by uniformly
distributed transverse pressure with a constanininate during the loading duration or with two-load
history (with a jump in magnitude of loading).

It follows from the comparisons of results and fréig. 1 that the viscoelastic approaches based on
the assumption of constant value of bulk modHu§&S, VK), or Poisson's ration (FS,, VK,) provide
the same results for all examples. The errors flectéons and stresses are much smaller than OT'h.
geometrically nonlinear approaches based on thargg®ns of large deflections (MKVK,) or finite
strains (Fg, FS) give comparable results for tested examples. érhars are about 0.1%. For statically
determinate example, the geometrically linear (LINLIN,) and nonlinear solvers provide the same
results, whereas for statically indeterminate eXasjghe error of linear approach can be about 100%
up to 300%.
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Fig. 1: Comparison of deflections at the mid-pahf{a) a fixed-end beam and (b) a simply-supported

beam for two-load history at the temperature 25 &ponse of proposed finite element model under

finite strains assumptions (kS FS), large deflections assumptions (VK VK)), and geometrically
linear case (LIN ~ LIN,).

The response of proposed multi-layered model fon,aeflection (Fig. 2 (a)) and stresses, is inlh f
agreement with the results of 2D analysis in ADINAe error in values is under 0.5%. The resultsswer
compared for temperatures 0°C and 25°C; ADINA sohaxl problems with convergence for 50°C due to
the low values of shear modulus of PVB.

5

The results obtained with and without accountingthe viscoelastic behavior of the interlayer are
compared for a simply-supported beam in Fig. 2Thg elastic model gives good prediction for bebavi
of laminated glass beams, especially for small sratprres (error around 2% for maximum deflections).
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For higher temperatures, the error can be sigmifi¢@p to 27%) after the change of loading levélere
are cases and zones where the elastic solutiont ismthe side of safety. The viscoelastic effectsid
be important for dynamic, impulsive, and reverssling.
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Fig. 2: Deflections at the mid-point (a) of a fixedd laminated glass beam under distributed loading
the temperature 0°C, 25°C, and 50°C, (b) of a syaspipported laminated glass beam with two-load
history at the temperature 50° C. Response of gemailéy nonlinear proposed model (\¢Kis
compared with model in ADINA (2D), model for thastic behavior of interlayer (RS with material
parameters (a) for 0°C or 50°C and duration of loa10° s or (b) for given loading duration.

5. Conclusions

(1) The viscoelastic approaches based on the asisumgd constant value of bulk modulus or Poisson's
ration provide the same results for all exampl2sThe geometrically nonlinear approaches basetien
assumptions of large deflections or finite strajhse comparable results for tested examples. (BcEf

of geometric nonlinearity can be significant forhbeior of statically indeterminate laminated glass
beams and plates; however the geometric non-lityezain be neglected for simply-supported beams. (4)
Temperature affects the behavior of laminated géagsificantly. (5) The simplified model assuming
elastic behavior of polymer foil gives good preitiotfor behavior of laminated glass beams unddicsta
loading, especially for low temperatures. The wdastic effects could be important for dynamic,
impulsive, and reverse loading under room or higemperatures.
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