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INFLUENCE OF AMPLITUDE ON FREE VIBRATION FREQUENCY OF 
A PARTIALLY TENSIONED COLUMN 
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Abstract: The non-linear vibrations of a slender system subjected to an external force applied between the 
elements of a structure are discussed in this paper. The boundary problem has been formulated on the basis 
of Hamilton’s principle and the small parameter method. Taking into account the solution of the boundary 
problem, the parameter describing the relation between the amplitude and natural vibration frequency has 
been obtained. In the presented investigations, only the first vibration frequency is discussed. The numerical 
simulations of the vibration frequencies are done for variable location of the external load. 
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1. Introduction 

The behaviour of certain structures can only be described using non-linear differential equations. This 
particularly holds for structures where vibrations have to be taken into account. Such an approach has 
been discussed by many authors in recent years. Various methods of solving non-linear boundary 
problems can be found in the literature. In the work by Szemplińska-Stupnicka (1983) a continuous non-
linear system in the form of a beam was investigated. The author used the Ritz method in the solution to 
the problem. Examples of the relationship between the amplitude and the vibration frequency were 
presented. Nonlinear vibrations of a beam with an elastic axial restraint were discussed by Prathap (1978). 
The author investigated how the amplitude affects the vibration frequency for different slendernesses of 
the structure as well as the influence of different stiffening of the pinned support in the longitudinal 
direction. Awrejcewicz et.al. (2011) studied a flexible nonlinear Euler-Bernoulli-type beam for different 
boundary conditions. The continuous boundary problem was reduced to a finite-dimensional one and 
solved using the Runge-Kutta method. Sokół (2014) studied the influence of a crack present in one of 
rods of a multi-member structure on the amplitude – vibration frequency relationship. Tomski and Kukla 
(1989) performed theoretical and numerical studies of a column subjected to an eccentrically applied 
Euler’s load on both ends of the system. Additionally, they used a translational spring in order to reduce 
the longitudinal displacement on one of the ends. In the solution to the boundary problem the small 
parameter method was used. As a result the parameters describing the relation between the linear and 
non-linear vibration frequency and longitudinal (linear/non-linear) force for different amplitudes and 
spring stiffness were obtained. Structures in the form of coaxial tubes or flat frames composed of 
elements with different rigidity are also geometrically non-linear and were presented in papers (Tomski et 
al. 2007, Uzny 2011). These types of structures are characterized by two forms of equilibrium: rectilinear 
and curvilinear. 
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The main scope of this paper is to estimate the differences between the linear and non-linear 
vibration frequency of a system subjected to axial load for a given magnitude of the parameter 
associated with the amplitude of natural vibrations. The proposed system can be modelled by a 
screw with a nut moving along its length. Additionally, in the real system, the nut is subjected to 
an external load. 

2. Formulation of the boundary problem 

The slender system discussed in this paper is presented in the Figure 1. It is constructed as a fixed – fixed 
rod loaded by means of force P, which is applied axially between the elements of the structure. The point 
of the force placement is described by parameter ζ (ζ = l1/l). The whole structure is characterized by 
constant bending stiffness ((EJ)1 = (EJ)2 = (EJ)), compression stiffness ((EA)1 = (EA)2 = (EA)) and mass 
((ρA)1 = (ρA)2 = (ρA)) (where: Ei – Young’s modulus, ρI – density, Ai – cross sectional area, Ji – 
geometrical axial moment of inertia of the cross section of i-th element of the structure). 

 
Figure 1. An investigated system 

The differential equation of motion in transversal and longitudinal directions are as follows:  
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Equations (1) and (2) are written in the non-dimensional form by means of the relationships:  
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Where: Si(τ) – internal force in the i-th element of the structure, ω - vibration frequency, Wi(xi,τ), 
Ui(xi,τ) – transversal and longitudinal displacements, respectively. 

The boundary conditions (in the non-dimensional form) are as follows: 
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In the final formulation of the boundary problem the small parameter method is used due to the non-
linearity in equation (2). All the non-linear elements are written in the power series of the small 
parameter. In this paper only the rectilinear form of static equilibrium is discussed, for which, the series 
are as follows:  
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The above equations are solved sequentially for: the estimation of the distribution of the external force 
onto elements of the structure, linear vibration frequency ω0, internal forces induced by vibrations, non-
linear vibration frequency ω2. 

3. The results of numerical simulations 

The discussion of the results is done with the use of the non-dimensional parameters: 
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Figure 2. The change of ζω parameter in relation to external load l  

The numerical investigations are done at external load level l ∈ 〈0,25〉 and at amplitude of vibration 
parameter ε = 0.008. The proposed magnitude of the small parameter ε = 0.008 refers to an amplitude of 
vibration approximately equal to double the magnitude of the minimum radius of inertia of the cross 
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section of the column. In Figure 2, the change in parameter ζω  in relation to the location point of external 
load ζ (ζ = 0.1; 0.3; 0.5; 0.7; 0.9) is presented. In this study only an influence of an amplitude on the first 
vibration frequency is presented and discussed. 

The degree of the influence of the amplitude on the vibration frequency of the system depends on the 
external load (parameter l) and the point of its location (parameter ζ). In the investigated range of 
external load (l ∈ 〈0,40〉), at amplitude corresponding to small parameter ε = 0.008 the smallest 
differences in the plotted curves l(ζω) can be found when the external force is located in the middle of the 
structure (ζ = 0.5). For a smaller magnitude of ζ (ζ = 0.1) it can be seen that the differences between the 
frequency with non-linear part ω (where: ω2 = ω0

2
 + ε2ω2

2; ω0 – linear component independent from 
amplitude of vibration, ω2 – non-linear component dependent on amplitude of vibration) and basic  ω0  
become smaller as the external load magnitude increases. In the case where ζ = 0.7, the considered 
difference between ω and ω0 is smaller for the small magnitude of the external load than in the case when 
the external load is increasing. 

4. Conclusions 

The numerical studies presented in this paper concern the estimation of the influence of the amplitude of 
vibration on the natural vibration frequency of slender system which is partially tensioned in a rectilinear 
form of static equilibrium. It has been shown that the size of the influence of the amplitude on the first 
vibration frequency greatly depends on the location point of the external load as well as on its magnitude. 
On the basis of the results of numerical simulations it can be stated that the point which is the least 
sensitive to the placement of the external load is the one located in the middle to the total length of the 
column (see curves external load (l) – frequency difference  (ζω) between ω and ω0). In the investigated 
external load range and its location, parameter ζω  varies from ~14% up to ~17%. In the future it is 
planned to extend the studies presented in this paper to include the curvilinear form of static equilibrium 
and discreet elements which can affect the natural vibration frequency. 
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