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Abstract: The paper deals with a stress analysis of hard rubber under large torsion deformations. This study 
was motivated by effort to enhance the theoretical background for experimental evaluation of material 
behaviour of hard rubbers on our test rig. First the Mooney Rivlin  model (MRM) for shear case of loading 
was developed and then MRM constants were attained by fitting of the MRM to the experimental torsion-
deformation curve. Then the tuned MRM cylindrical model was tested under torsion loading for evaluation of 
stress state. Besides the radial distribution of shear stress and strain the attention was paid to evaluation of 
axial stresses. It could help to assess the influence of the tension stresses on the tangential deformations of 
the test sample during large torsion.  
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1. Introduction 

For rubber materials unlike conventional structural materials under dynamic loading, a nonlinear time-
varying behavior occurs due to the size of straining, creep, temperature and aging (Pešek, 2008). Tests of 
rubbers with higher hardness Sh 50-80 (Nashif, 1985) were performed in the laboratories of IT AS CR in 
recent years. The dynamic tests of hard rubbers require usually a costly long-term operation of heavy 
hydraulic machines. Therefore we have started to look for realization of the tests in laboratory conditions 
with the lighter laboratory technique. Currently we have been developing a torsional dynamic test rig for 
torsional straining of hard rubber samples with a circular cross-section (Šulc, 2014). The reason for 
torsion straining was that hard rubber materials are softer in torsion than in pressure and therefore it is 
easier to achieve larger strains. Furthermore at this straining the shape changes are smaller in comparison 
with pressure loading when so-called barreling effect arises due to incompressibility of the material.  

The torsional test rig should serve to dynamic material tests of hard synthetic rubbers for 
determination of the thermo-viscous-elastic material characteristics under small as well as finite strains, 
different amplitudes, frequencies and temperatures. This paper deals with the stress analysis of cylindrical 
samples at larger shear strains (up 10%), which leads to analysis of a nonlinear dependence of shear stress 
on shear strain and initiation of tensile component along the axis of the sample at larger torsion 
deformations. 

Hence, the aim was to evaluate this stress component to assess its influence on the overall straining of 
the test sample. Therefore a numerical finite element model (FEM) of a rubber cylinder under the 
torsional stress considering hyperelasticity and finite strains was created in ANSYS. The five-parametric 
Mooney-Rivlin model (MRM) was considered. To calculate the constants of the MRM model, analytical 
relation between shear stress and shear strain were derived. The relation served for identification of the 
MRM constants on a base of tuning of the constant to achieve an optimal agreement between analytical 
and experimental stress-strain curves. Finally, the results and analysis of the numerical calculations of the 
three-parametric MRM model by the FEM are presented. 

2. Hyperelastic model of rubber for shear straining   

The strain energy of five-parametric MRM model can be expressed as 
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where W is a strain energy and 1I , 2I are invariants of the Green strain tensor. 

Torsion straining of the cylindrical surface is analogous to the straining in a simple shear. Deformation 
gradient F for the simple shear strain is determined by 
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where γ  is the shear strain of a segment of the cylinder. Strain gradient F is decomposed by polar 
decomposition to a rotational tensor R and a strain tensor U (right "stretching" tensor). Then for Green's 
strain tensor FFC T= and strain tensor U holds 

( ) 2UUURURURURUFFC ===== TTTTT .                           (3) 

To determine the principal strains in the “main” directions under the simple shear consideration, first we 
calculate the Green's strain tensor C  
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Then eigenvalues of the Green strain tensor are equal to principal strains of the strain tensor U   
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To get MRM constants, we determine the invariants of Green strain tensor by principal strains 
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At simple shear deformation there is no volume change. It holds when the third invariant of the Green 
strain tensor equals to 1 and 13 =λ , too. So, we can express a relation between the remaining two 
principal strains 21 /1 λλ = . Substituting the strain tensor eigenvalues (principal strains) of (5) into the 
invariants (6) we get these relations 
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Constitutive relation for Cauchy stress expressed in principal strains is  
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where p is the Lagrange multiplier also called hydrostatic pressure. The constant p is determined 
incompressible materials from the condition 03 =σ (Holzapfel, 2000). 

If we come from the expressions of the Cauchy principal stress (8) for the simple shear straining of 
cylindrical surface, after derivation of the strain energy over invariants 1I  and 2I  of the Green strain 

tensor and after substituting 1λλ = , 
λ

λ 1
2 = . We can express it in the form 
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After substitutions and derivations of (9) the Cauchy principal stresses for five-parametric MRM model 
were arranged (Šulc, 2016) as  
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The final relation for the maximal shear stress from principal stresses 21 ,σσ  by use of (10) is 
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The constants of the MRM are evaluated from the experimental shear stress-strain curve using the least 
square method (LSM) (Šulc, 2016). 

3. Numerical results of torsion straining of rubber cylinder under larger strains 

Experimental shear stress-strain curve of selected hard rubbers for the MRM constant tuning was 
obtained by our torsion test rig for a temperature -20°C. The test specimen was of cylindrical shape glued 
at both heads to steel consoles pins mounting in the collets. By usage of the consoles the test sample is 
not deformed in the vicinity of the heads due to clamping. The dimensions of the test sample of rubber 
were: ∅D = 0.05 m, length L = 0.036 m and weight 0.0763 kg. The material was isoprene butadiene 
rubber (IB) of hardness Sh60 and shear modulus of 11 MPa for a shear strain below 1%, temperature 
 -20°C and frequency 20Hz of torsional loading. Experimental shear stress-strain curve (maximum value 
of strain is about 8%) is shown in Figure 1. Tuned constants of the three and five-parametric MRM 
models based on LSM method result in: 
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The relations (1-10) result analogically for three-parametric MRM model where 00220 == CC  

(Šulc, 2016). For comparison, the shear stress-strain curves 
of three- and five-parametric models of MRM together with 
experimental counterpart are plotted on Figure 2. 
 

Fig. 1: Comparison of experimental shear stress-strain 
curve with counterparts of three- and five-parametric MRM 

models 

It is obvious that the five-parametric MRM model fits 
better to the experimental data. For numerical simulations 
we come from the cylinder of diameter ∅D = 0.05 m and 
length l = 0.02. The cylinder was fixed in all nodes of the 
basis head and was loaded over a rigid plate connected to 
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the upper head of the cylinder by the torque moment Mk=22.5Nm. Two material models, a) elastic model 
(G = 33MPa), b) three-parametric model MRM with the experimentally tuned constants, were used for 
the stress and deformation analysis. Linear model corresponds to the analytical solution to a size of shear 
stresses, tangential displacements and their space distribution. MRM model behaves almost linearly in 
this range of deformations and gives slightly smaller tangential deformation with respect to the linear 
model. This difference are caused by different methods of deformation solution (linear versus non-linear) 
including different representation of the stress-strain curve (Fig.1).  The distribution of tension stress σzz  
over the surface of the specimen calculated for the non-linear MRM model (case b) is shown in Fig.2. It 

can be seen that the axial stresses are non-uniformly 
distributed in the volume of the specimen and their maximal 
stresses concentrate along the axial axis of the specimen 
and attenuate with the radial distance from the axis. 

Fig. 2: The contour map of tension stress σzz distribution 
over the surface of the sample 

By comparing maximal values of the shear and axial 
stresses for this study case, it is obvious that a size of axial 
stresses achieve very small values (about 25 times smaller) 
related to a size of shear stresses at shear deformations at 
cca 20%. 

4. Conclusions  

The aim of this paper was to evaluate the influence of the axial stresses arising at cylindrical samples of 
hard rubbers under large torsional deformations. Therefore the analytical relation for the simple shear 
stress-strain dependence of the five-parametric MRM model was derived. Both the constants of five-
parametric model and analogically the three-parametric MRM model were calculated from the 
experimental stress-strain curve that we ascertained for the isopren-butadien rubber Sh60. The combined 
stress distributions of rubber cylinder under the torsional loading and larger strains were calculated by FE 
method using three-parametric MRM model. The results showed that a non-linearity is very weak for 
assumed shear strains (up to about 20%). As to the axial stresses it was found that they concentrate 
mainly around the cylinder specimen axis and reach relatively low maximal values with respect to the 
maximal values of shear stresses. It can be, therefore, assumed that the side effect of axial stresses does 
not significantly influences an accuracy of standard evaluation of rubber constants based on the linear 
theory of elasticity. 

However, these theoretical findings are to be validated by the experiment. The torsion scale with a 
possibility to evaluate the axial tensile force has been developed in our lab and the first experimental 
results will be shown at the oral presentation at the conference. 
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