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Abstract: This contribution describes results of measurement of magnetorheological fluid MRF-140CG by 
LORD Corporation. Results of this measurement are used as an inputs to the CFX model. MR fluid has been 
measured in special slit-flow rheometer at temperature range from 25 to 60 °C and at magnetic field of 0, 35, 
70 and 105 kA/m. The flow curves were compiled with the respect of Bingham model of MR fluid Non-
Newtonian behavior. Bingham model has two parameters – yield stress and Bingham (plastic) viscosity. 
Thanks to high precise measurement of pressure drop, the temperature dependence of yield stress is visible. 
All measured rheological properties were used as an input to the model described MR fluid behavior in 
dependence on temperature and magnetic field. 
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1. Introduction 

Magnetorheological fluids (MRF) are a class of smart and intelligent materials. Their initial discovery is 
credited to Jacob Rabinow in 1948 (Rabinow, 1948). MR fluids mainly consist of three basic compounds: 
micron-sized iron particles, carrier oil and additives. Immediately upon the application of external 
magnetic field, the MR fluid can change its state from fluid to semi-solid or plastic state, in which the MR 
fluid shows viscoplastic behavior, characterized by the initial stress (yield stress), varying based on the 
extent of the applied magnetic field (Bossis, Lacis, Meunier, & Volkova, 2002; Carlson & Jolly, 2000; 
Klingenberg, 2001). MRF shows a Non-Newtonian behavior – the dependence of shear stress and shear 
rate is not linear. If the flow curve is measured and described at high shear rates, the Bingham model for 
MRF description can be used. Particularly, it is valid for On-state, when the considerable yield stress is 
occurred. The significant deviation of this model from the reality is only at low shear rates (Ngatu & 
Wereley, 2007), where the MRF exhibits viscoelastic behavior which can be described better by 
Herschel-Bulkley model than by Bingham model (Choi, Cho, Choi, & Wereley, 2005). When we need a 
CFX model describing a MRF flow (for example at process of designing of a new MR device), 
parameters describing MRF have to be inserted to the model. Parameters obtained from commercial 
rheometers are not suitable for their very low range of measured shear rates and inaccurate determination 
of a real shear rate and stress. Therefore, it is necessary to measure a MRF in a special rheometer.  

This paper describes results from measurement at high shear rates and corresponding flow curves. 
The equation for calculation of yield stress and Bingham viscosity in dependence on temperature and 
magnetic field intensity was built.  

2. Methods 

The measured MRF was made by LORD Corporation, type MRF-140CG. Solids content by weight (Fe-
particles) in MRF is 85 %. MRF was measured at temperature range from 25 to 60 °C and at magnetic 
fields of 0, 35, 70 and 105 kA/m. The corresponding shear rate (calculated from Bingham model) reaches 
up to 160 000 s-1. The MRF was measured in a special slit-flow rheometer in version 2 (see Fig. 1). 
Unlike a previous version, the new rheometer has high precise measurement of temperature (before and 
behind the MR valve) and the shear stress is not calculated from measured force of piston but from the 
pressure drop in the MR valve, which is acquired by two accurate pressure sensors. The advantage of this 
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solution is an absence of all passive resistances, e.g.: influence of friction from piston and piston rod 
sealing, influence  of friction from sealing and sliding tapes of floating pistons, absence of hydraulic loss 
caused by flow of hydraulic oil in the system, etc. The method of evaluation and determination of flow 
curves is described in the paper (Mazůrek, Roupec, Klapka, & Strecker, 2013; Roupec). 

 

  

Fig. 1: Built-in rheometer in dynamometer with DAQ and RTC station (left); detail of MR valve with 
sensors (center); detail of MR valve – active zone (right) 

3. Results and discussion 

Figure 2(a) shows flow curves measurement of MRF-140CG at zero magnetic field. Without magnetic 
field, the MRF exhibits almost Newtonian fluid. A small deviation from linear course is visible at 25 and 
30 °C. Figure 2(b) shows viscosity dependence on temperature. The dependence has exponential 
character with very good interlay of points.  

 

   
Fig. 2: MRF-140CG measured at zero magnetic field by slit-flow rheometer (a) flow curves; (b) viscosity 

dependence on temperature 

Figure 3(a) shows flow curves measured at magnetic field of 146 kA/m. There are flow curves at 
different temperature and the difference among the temperature is obvious. Figure 3(b) shows a detail on 
flow curves and equation of linear regression. The last term in equations determine a yield stress and the 
first term determines a Bingham viscosity (plastic viscosity). There is evident dependence of yield stress 
and Bingham viscosity on temperature. The same measurements were carried out also for higher magnetic 
field intensities of 280 and 368 kA/m. Figure 4 shows a dependence of yield stress and viscosity on 
temperature for all measured magnetic fields. Unfortunately, the magnetic field is not increased about the 
identical step of intensity but it corresponds to exciting current to the electromagnet coil. However, we 
can calculate that the ratio of 368 and 280 kA/m is 1.31. But ratio of corresponding yield stress, for 
example at 50 °C, is only 1.22. So we can deduce that the Fe-particles approach to their saturation limit, 
in other words the saturation of Fe-particles is in the area of permeability decreasing. The course of 
viscosity is, excluding temperature, also magnetic field dependent. The higher magnetic field is, the lower 
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viscosity dependence on temperature is and the lower absolute value of viscosity is. Maybe, some future 
study will describe this phenomenon by the model describing directly the interaction among single 
particles and carrier fluid. 

  
Fig. 3: MRF-140CG measured at magnetic field of 146 kA/m by slit-flow rheometer (a) flow curves; (b) 

detail with equations of regression 

The equation valid for Bingham model is as follows: 

 𝜏𝜏(𝛾𝛾,̇ 𝐻𝐻, 𝑡𝑡) = 𝜏𝜏0(𝐻𝐻, 𝑡𝑡) + 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐻𝐻, 𝑡𝑡) ∙ �̇�𝛾 (1) 

The yield stress dependence on temperature is interlaid by power function characterized by this equation: 

 𝜏𝜏0(𝐻𝐻, 𝑡𝑡) = 𝐴𝐴(𝐻𝐻) ∙ 𝑡𝑡𝐵𝐵(𝐻𝐻)  (2) 

The viscosity dependence on temperature can be described by exponential function as follows: 

 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐻𝐻, 𝑡𝑡) = 𝐶𝐶(𝐻𝐻) ∙ 𝑒𝑒𝐷𝐷(𝐻𝐻)∙𝑝𝑝  (3) 

 
Fig. 4: Dependence of (a) yield stress and (b) viscosity on temperature at different magnetic fields  

Figure 5(a) shows the dependence of parameter A and B’ on magnetic field intensity.  

  
Fig. 5: (a) dependence of parameter A and B on magnetic field; (b) dependence of parameter C and D on 

magnetic field 

Parameter B can be determined from the equation (4). This procedure were done for better fitting of 
points: 
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 𝐵𝐵(𝐻𝐻) = 1
𝐵𝐵′(𝐻𝐻) = 1

−1.325∙ln(𝐻𝐻)+4.78
 (4) 

If these parameters are constituted to eq. (2), the yield stress is obtained. Parameters C and D were not 
able to fitted with simple function. Therefore more complicated procedure for the best fitting was used. 
Parameter C is characterized by this equation:  

 𝐶𝐶 = 2 ∙ cos (65.051 ∙ 𝐻𝐻0.05052) (5) 

Parameter D is characterized by this equation:  

 𝐷𝐷 = 1
�−386.92∙ln(𝐻𝐻)+2564.6

− 0.05 (6) 

The relationship for τ determination can be obtained by substituting equations (2) and (3) into (1) as 
follows: 

 𝜏𝜏(𝛾𝛾,̇ 𝐻𝐻, 𝑡𝑡) = 𝐴𝐴(𝐻𝐻) ∙ 𝑡𝑡𝐵𝐵(𝐻𝐻) + 𝐶𝐶(𝐻𝐻) ∙ 𝑒𝑒𝐷𝐷(𝐻𝐻)∙𝑝𝑝 ∙ �̇�𝛾 (7) 

Complete model with substituting parameters A, B, C and D as follows: 

𝜏𝜏(𝛾𝛾,̇ 𝐻𝐻, 𝑡𝑡) = (169 ∙ 𝐻𝐻 + 166115) ∙ 𝑡𝑡
1

−1.33∙ln(𝐻𝐻)+4.8 + 2 ∙ cos (65.1 ∙ 𝐻𝐻0.05) ∙ 𝑒𝑒
� 1
�−387∙ln(𝐻𝐻)+2565

−0.05�∙𝑝𝑝
∙ �̇�𝛾 

Thanks to this equation the shear stress for corresponding magnetic field, temperature and shear rate can 
be calculated. 

4. Conclusion  

The MRF-140CG was measured in a special slit-flow rheometer. The results were evaluated for Bingham 
model describing accurately a flow at high shear rates. There were investigated several new phenomena: 
(a) yield stress dependence on temperature and (b) viscosity dependence on magnetic field intensity. The 
model of a MRF-140CG flow character was created and used as input to the analytical model and CFX 
model for simulation of flow in the MR valve with bypass.  
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