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Abstract: A parallel delta manipulator of six degrees of freedom with a pneumatic muscle drive was 
presented in this paper. A solid manipulator model was explained as well as a prototype of this device was 
presented. Drive units of the manipulator, which consist of two pneumatic counter-rotating muscles 
connected via belt spur drive and produced by the author of this paper, were characterized. The author 
presented a scheme of the control system and explained its elements. A kinematic model of the manipulator 
that is essential in the steering process, was shown. Some unique features of the device, such as high 
overload of pneumatic muscles, were outlined in this paper as well. They allow applying the manipulator 
when operating with items of unknown or irregular shapes. Possible collisions of the effecter with the items 
transferred will be effectively damped by the drives.   
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1. Introduction 

Industrial manipulators, both those of serial structure as well as with a closed kinematic chain, are one of 
the main elements of flexible production lines. Electric or hydraulic drives are applied in the majority of 
cases in those devices. (Laski, Pawel Andrzej et al., 2014) The author suggested application of parallel 
pneumatic muscles to the drive. Such drives are characterized by high flexibility and overload capacity as 
well as its natural abilities to move smoothly.  

2. Solid model of the manipulator  

A parallel delta manipulator of six degrees of freedom was presented in this article. Its construction was 
shown in Fig. 1. The device consists of a stationary base, six identical and independent arms and a 
moveable platform. Each arm is built of an active part that is connected with a drive unit, and of a passive 
part connected with the platform. The mobility of the operating platform of the manipulator is six. It 
might be calculated using the formula (1) 

 
5

1
6 i

i
w n ip

=

= −∑   (1)  

where: w – manipulator’s mobility, n – number of moveable manipulator elements, i – pair class 
appearing in the kinematic chain, ip  – number of kinematic pairs of i-class. Each arm of the manipulator 
is driven by an independent drive unit, which consists of two pneumatic counter-rotating muscles, belt 
spur drive, bearing unit and an angle encoder. Linear movement of pneumatic muscles is changed into 
rotary movement of the active arm element with the use of the belt spur drive.  
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Fig.  1: Manipulator construction – general overview; 1 – operating platform, 2 – joint 3 – arm (passive 
element), 4 – base, 5 – arm (active element), 6 – drive unit 

3. Kinematic model of the manipulator 

The task of the manipulator is to move the operating platform against the stationary base. The platform 
movement constitutes the resultant of six controlled simultaneous movements of arms. As a result of such 
a movement, manual operation of the manipulator consisting in changing the angular position of each 
drive regardless of the others, is difficult or even impossible.  That is why, in order to control the 
manipulator, determining and solving the inverse kinematics problem is essential. The problem consists 
in indicating drive articulated coordinates, knowing the setpoint position and orientation of the operating 
platform. The solution of the inverse kinematics problem was conducted in two stages. In the first one, 
knowing the setpoint position and orientation of the operating platform, the coordinates of points located 
in the upper joints of particular arms were determined. The correlations that allowed to determine those 
coordinates are presented with the following formula (2).  
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where: i – joint number (arm), ,x , ,, ,i i y i zC C C  – coordinates of i-joint, iz  – location angle of the joint on 

the platform, 2R – radius of the circle, where the following joints are located , , , , ,x y zP P P α β γ  – setpoint 
location and platform orientation. 

Subsequently, taking advantage of the Denavit – Hartenberg parameters, dependencies, which 
allowed to calculate configuration coordinates, with a known position of the upper joint, were determined 
for each arm. Those dependencies are functions of three variables and for each arm they create a system 
of three equations with three unknown quantities that is presented with the following dependency (3) 
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where: i – joint number (arm), ,1 ,2 ,3, ,i i iθ θ θ  – articulated coordinates of a particular arm, 0 , iε ε  – position 

angles of the arm on the base, 1R – radius of the circle, where the following arms are located, 1 1, ,l l h  – 
geometrical dimensions of the arms and base. ,1iθ  is, however, an articulated coordinate of the drive of 
the i-arm.  The system was solved with the use of the Newton-Raphson method. (Blasiak, 2015) As a 
result, a set of three solutions was achieved. Each solution included three articulated coordinates. From a 
mathematical point of view, those solutions are correct. However, they need to be verified as far as their 
physical correctness is concerned and later, the proper solutions need to be chosen. (Blasiak & Pawinska, 
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2015) Fig. 2 presents the trajectories of manipulator drives for two set trajectories of the operating 
platform: helix and circle, with stable orientations.  

 
Fig.  2: Trajectories of particular drives for set displacements of the operating platform.   

4. Operating space of the manipulator 

Operating space of the manipulator determines a set of all points in the space that a robot is able to 
produce. This space, however, differs for various orientations of the operating platform. The operating 
platform presented in this paper was determined via discretization of points for zero orientation of the 
operating platform, i.e. for angles , , 0α β γ = . (Laski, P A et al., 2014) A set of points surrounded by 
park position of the manipulator with dimensions bigger than the maximal width of the robot arms was 
randomly generated. Subsequently, out of that set of points, points for which it was possible to solve the 
inverse kinematics problem were chosen. What is more, the results of such calculations, which are 
articulated variables of the manipulator arms, need to fulfil the geometric conditions. (Janecki & 
Zwierzchowski, 2015) The operating space of the manipulator under consideration was presented in 
Fig. 3.  

 
Fig. 3: The operating space of the manipulator determined for zero orientation of the effecter, in 

configuration of the robot with the platform pointed downwards.  

5. Control system of the manipulator  

The main element of the control system of the manipulator is a computer with real time system produced 
by Speedgoat. This device is equipped with AC & CA transducers (Takosoglu, J E et al., 2014). The 
system operation was divided into two stages. (Takosoglu, Jakub Emanuel et al., 2009) The first one is 
dedicated to solving the inverse kinematics problem and indicating new articulated coordinates. Solution 
of six systems of non-linear equations is required. The control system in the second stage generates 
proper signals that control the drive units (Andrs et al., 2012). Each control system consists of two 
counter-rotating pneumatic muscles. 3/2 proportional pressure valves, model tecno plus, manufactured by 
HOERBIGER were proposed to operate the pneumatic muscles. Those valves have piezoelectric control, 
which ensures quick response time. 16-bit absolute encoders of Posital Fraba, model OCD-S101G-1416-
S060, served to measure the drive angular position. The scheme of the control system was presented in 
Fig. 4.  
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Fig. 4: Scheme of the control system of the manipulator  

6. Conclusions  

The manipulator of six degrees of freedom and with a closed kinematic chain was presented in this paper. 
The author presented the manipulator construction and the kinematic model, explained the operating 
space as well as showed the control system of the manipulator. The construction of the manipulator of six 
degrees of freedom allows free space orientation of the transported items. Artificial pneumatic muscles 
were applied as drives. The features of the applied drives provide the manipulator with high dynamics. 
They enable smooth start and stop as well as eliminate results of collisions of the manipulator with the 
surrounding areas. Due to the application of pneumatic drives, instead of electric, it is possible to use the 
manipulator in hazardous environment with danger of explosions or fire. A drawback of the applied 
drives is the difficulty of controlling them that results from their non-linear characteristic. From the 
research of a single muscle pair, it might be concluded that positive results of the drive positioning are 
obtained when using PID or Fuzzy Logic controllers. 
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