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DISPERSION PROPERTIES OF FINITE ELEMENT METHOD: REVIEW 
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Abstract: Review of the dispersion properties of plane square bilinear finite element used in plane elastic 
wave propagation problems is presented. It is assumed the grid (spatial) dispersion analysis and, further, the 
temporal-spatial dispersion analysis for explicit direct time integration based on the central difference 
method. In this contribution, the dispersion surfaces, polar diagrams and error dispersion graphs for 
bilinear finite element are depicted for different Courant numbers in explicit time integration. Finally, 
recommendation for setting the mesh size and the time step size for the explicit time integration of discretized 
equations of motion by the bilinear finite element method is provided.   
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1. Introduction 

For accuracy analysis of the finite element method (FEM) (Hughes, 2000; Belytschko, 1983) in solving 
of wave propagation problems in solids is necessary to know dispersion properties of temporal-spatial 
semi-discretization. Generally, finite element (FE) solution is polluted by dispersion errors as an effect of 
spatial FE discretization [Belytschko, 1978; Mullen, 1982; Abboud, 1992] and by period elongation 
errors and numerical damping of direct time integration (Hughes, 2000; Belytschko, 1983). The 
dispersion errors are caused by differences of numerical wave speeds from the wave speeds in the ‘ideal’ 
continuum. Moreover, the FEM dispersion error is dependent on the frequency of propagating wave and 
on its orientation in a FE grid. For more information about dispersion properties of FEM see [Okrouhlík, 
1993; Brepta, 1996; Červ, 1996; Plešek, 2010; Gabriel, 2010; Kolman, 2013; Kolman, 2015].  

The temporal-spatial dispersion analysis of FEM in implicit and explicit direct time integration has 
been studied in [Schreyer, 1983; Marfurt, 1984]. The central difference method with the diagonal 
(lumped) mass matrix [Dokainish, 1989] is widely utilized in explicit time integration, while the 
Newmark method with the consistent mass matrix [Newmark, 1959] is employed in implicit 
computations. In principle, implicit computation needs a much larger computational effort per time step 
due to the solving a linear equation system. On the other hand, explicit methods with a diagonal mass 
matrix require a vector solver only, but mostly they are merely conditionally stable. Thus, the time step 
size must satisfy the stability limit, [Park, 1977]. In wave propagation and impact problems, the explicit 
time integration is preferred, therefore we focus only on the central difference method [Dokainish, 1989].  

2. Wave propagation in an elastic unbounded domain 
It is known that two types of elastic waves propagate through an elastic unbounded domain (Achenbach, 
1973). The first wave is the longitudinal one propagating with the wave speed given by 

ρ/)2(1 Gc +Λ=  and the second one is the transverse wave with the wave speed   ρ/2 Gc = , 
where Λ  and G  are the Lamé’s constants and ρ  is the mass density.  
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In dispersion analysis, we assume a plane wave solution for components of a displacement field in the 
form ( )[ ]tckUu ii     iexp ±= px , 2,1=i , where 1-i = , ),( yx kk=k  is the wave vector, 

22
yx kkk +=  is the wavenumber, x  is the position vector, p is the unit vector describing direction of 

wave propagation, c is the phase speed, t  is the time and iU  is the i-th component of displacement 
vector. Relationship for the angular velocity of wave ω  is given by ck =ω and the wavelength λ  is 
computed as   k/2πλ = .  The positions of nodes with the indexes  nm,  in the bilinear FE mesh are 
prescribed as mHxm = , nHyn = , where H marks the edge length of a bilinear finite element. The 
components of the unit vector p  are defined by the angle θ : θcos=xp , ( )θπ −= 2/cosyp (Fig. 1).   

A dimensionless time step size is defined by the Courant number as HtcCo /1∆= , where t∆ is the time 
step size. 

 

Fig. 1: A plane infinite bilinear regular finite element mesh and plane wave inclined by angle θ . 

3. Dispersion properties of the bilinear finite element method 

Results of spatial and temporal-spatial dispersion analysis of the bilinear finite element and for the 
explicit time integration based on the central difference method with the lumped mass matrix are 
presented on Figs. 2, 3 and 4. The results are depicted for several Courant numbers, where the value 

0.1=Co  corresponds to the critical time step size for the bilinear finite element with the lumped mass 
matrix [Park, 1977]. 

 
Fig. 2: Temporal-spatial dispersion relations of a plane square bilinear finite element with the lumped 

mass matrix for Courant numbers: Co → 0 and Co = 1.0. 
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Fig. 3: Polar temporal-spatial dispersion diagrams of a plane square bilinear finite element with the 
lumped mass matrix for Courant numbers Co={→0, 0.5, 0.95, 1.0}  for H∕𝜆𝜆h = 1∕10 and H∕𝜆𝜆h =1∕3. 

 

 
Fig. 4: Dispersion errors in phase velocity of a plane square bilinear finite element with the lumped mass 
matrix for Courant numbers Co = {→ 0, 0.5, 0.95, 1.0}  for propagation directions given by angles 𝜃𝜃 = 0 

and 𝜃𝜃 = 𝜋𝜋∕4. 

 

Based on the temporal-spatial dispersion analysis of the bilinear finite element, we can see an effect 
of improving dispersion errors for longitudinal waves for the critical time step (the Courant number close 
to 0.1=Co ) and for wave direction given by 0=θ . On the other hands, this effect is not seen for the 
transverse waves. Therefore, the best choice for the time step size with respect to accuracy of the linear 
FEM and explicit time integration is the time step size given by the stability limit [Park 1977]. 

4. Conclusions 

Based on the dispersion analysis of the bilinear finite element method, the edge length of the finite 
element H is recommended to choice so that it is satisfied the conditions 10/max λ≤H . The wavelength 
can be estimated as max2 / fc=λ , where maxf is the maximal loading frequency in Hz.  

Further, it was shown that dispersion errors in explicit FE modelling can be improved only for 
longitudinal waves, where we should integrate with the critical time step size by the central difference 
method. In principle, the dispersion errors for transverse waves are independent of a choice of the stable 
time step size. Other way how to eliminate dispersion errors also for transverse waves is to use the 
partitioned wave explicit scheme presented in [Kolman, Cho, Park, 2015]. 

This contribution is dedicated to the seventy-fifth birthday of Professor Miloslav Okrouhlík. 
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