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COMPUTATIONAL HOMOGENIZATION OF FRESH CONCRETE
FLOW AROUND REINFORCING BARS

F. Kolarik', B. Patzak , J. Zeman '

Abstract: Motivated by casting of fresh concrete in reinfaf@®ncrete structures, we introduce a numerical

model of a steady-state non-Newtonian fluid flowodlgh a porous domain. Our approach combines

homogenization techniques to represent the reiefbidlomain by the Darcy law with an interfacial cbog

of the Stokes and Darcy flows through the Beavesgh-Saffman conditions. The ensuing two-scale
problem is solved by the Finite Element Method wihsistent linearization and the results obtairfiexh

the homogenization approach are verified againky fiesolved direct numerical simulations.
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1. Introduction

This work is motivated by the computational modglof self-compacting concrete (SCC). In contrast to
the conventional concretes where the aim duringetsign lies in achievement of desirable compressiv
strength, SCCs must meet additional rheologicalirements, such as higher liquidity, in order tbifi

all the possible gaps in the whole form-work whigeping the risk of phase segregation at low lesas,
(Roussel et al. 2007). For this reason, the foduke numerical modeling of SCC is not only on the
structural, but also on the casting performance, thas it relies on techniques of computationaidflu
mechanics.

The constitutive models suitable for structuralls@plications consider concrete as a homogeneous
non-Newtonian fluid and the concrete flow can bentkefficiently simulated using the Finite Element
Method. The efficiency relies on how much detaits @mvolved in the computational model. Therefore,
sub-scale phenomena can only be accounted for xpgtely. For example, the effect of traditional
reinforcement can be accounted for by heuristicifitadion of constitutive parameters. This is i
especially in case of modeling of casting proceasdsghly-reinforced structures, which represdr t
major field of application for SCC.

In this paper, we propose an efficient approachclhincorporates the effects of traditional
reinforcement on fresh concrete flow. The toolscomputational homogenization will be utilized to
avoid the need to resolve flows around each redirigrbar, which would lead to excessive simulation
costs comparable to those of the particle-basecewodo this purpose, the structure is decompasied i
three parts: reinforcement-free zone occupied hgraogeneous non-Newtonian fluid, reinforced zone
where a two-scale homogenization scheme is emp)@etihomogenization-induced interface separating
the reinforced and reinforcement-free zones. Atskhge, we restrict ourselves only to steady Htates.

In the reinforced domain, we assume that the reiinfg bars are rigid, acting as obstacles to the
flow, and that their size is small compared to arabteristic size of the structure or of the cotecferm-
work. It now follows from the results of mathematibomogenization theory, that the flow in thisiozg
can be accurately approximated by a homogeneousyDaw, see (Jager et al. 2001). The relation
between the macro-scale pressure gradient andetipage velocity is defined implicitly, via a micro-
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scale boundary value problem that represents aStibdw in the representative volume element (RVE)
of the reinforcing pattern, driven by the gradiehthe macro-scale pressure. For the numericatinteeat

of the ensuing two-scale model, we will rely on taiationally-consistent approach developed rdgent
in Sandstréom & Larsson (2013), which combines wagational multi-scale method with first-order
computational homogenization, see also (Hughek £988).

As a result of the homogenization procedure, aficiat interface appears that separates the Stokes
domain from the Darcy domain. In order to couple flows in both domains, we will employ the
Beavers-Joseph-Saffman interface conditions. Tkairg interface constants, relating the tractioctare
and the relative tangential slip in velocity, candstimated from an auxiliary boundary value pnobéd
the cell level.

2. Formulation of the Problem

As a point of departure, we consider a Stokes ftawr a perforated domain as shown in Fig. 1. We
denote, in agreement with Fig. @; as the reinforcement-free part of the domain @péds a part of the
domain with the obstacles (further called perfatateb-domain). Boundary of the obstacles is denaged
dQp, While the outer boundadQ is split into two disjoint part8Qs andoQ¢" corresponding to the type
of applied boundary conditior; stands for the interface between the perforafag, and the un-
perforated Qp, domains. Byn, we denote both the outer unit normal vectof@ andI , in the latter
case pointed frorp to Qf,

[ o0p

e 0P

Fig. 1 Stokes flow over the bars modeled as a pggd domain.

The governing equations of the steady-state flornincompressible fluid in the union of domaifis
andQr take the form

—V-t(D(w)+Vp=pb inQrUQp
V-u=0 inQruUQp
u=0 on dQp (D)
(t—pI)-n=—pn on 0L
u=14,n on 00y

Our notation is standara;stands for the deviatoric part of a stress tertberstrain rate tens® is
obtained as the symmetrized gradient of the unknestacity field u, p denotes pressurgb are body
forces,| is a unit second order tensor ahdandp refer to the boundary data.

In order to properly average the flow in the peated domainQp, we follow the idea of the
variational multi-scale method and its applicatitn porous media. The next step then consists in
formulation of (1) in a weak sense and in introéucbf a decomposition of the unknown pressuralfiel
and its corresponding test funcida into the macro-scale and subscale parts as

p =pM+ p5, 8q= 6qM+ 8q°. (2)

By substitution of (2) into the weak formulation df), we can split the equations according to the
macro-scale and sub-scale part of the test fundipimto the the macro-scale and sub-scale problem
respectively. Following the procedure introduce®andstrom & Larsson (2013), which we skip here for
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the sake of brevity, the equations on macro-scale lme transformed using the averaging rule and
employing the first order homogenization, see (dagal. 2001), into the form of a conservationattn

6q (V-u)dx =0, (3)
Qp

where (), refers to the homogenized macro-scale domain edvby RVE’s. Asu, we denote so
called seepage velocity, obtained from the subesgaiblem by a simple averaging rule; the bar setfer
the homogenized domain. The relation (3) can begrized as a Darcy law which governs the flow in a
porous media. The flow inside the homogenized doMgiis coupled with the flow in the un-perforated
domainQ; through the interfacg with the help of so called Beavers-Joseph-Saffomrditions. These
conditions prescribe continuity of the velocitieslastresses in the normal direction and relatess@and
velocity in the tangential direction (with respéatthe interface) through the paramegemwnhich can be
interpreted as a friction parameter. The conditimage the following form

U, —u, =0
p-p=n-tn @)
Bus—t;) =n-t-t,

and have to be satisfied on the interfdteThe parametep in the last equation of (4) can be
determined, in case of a linear Newtonian fluidnirthe geometry of the domain. However, up to our
best knowledge, there is no way how to determimeghrameter in case of non-Newtonian fluid, which
is used in our work as a constitutive relationtfe concrete. Therefore, the paramgtdras to be set up
in advance by the rule of a thumb. The sub-scadblem itself represents the Stokes flow solved ove
the RVE. It comes from the sub-scale part of thakvMermulation of (1) with the help of localizatiar
the test functions, see Sandstrom & Larsson (2fat3he details. It consists in findir@?®, p°) such that

f des:t(D(us)) dx — f (V-swHpSdx = | Sw- (pb — g)dx
Qs Qs Qs )]

Jo 8a(V - u¥)dx = 0.

In above, we denot8; the domain of the RVE and also the super sctipefers to the sub-scale
problem. The macro-scale problem (3) is coupledh wite sub-scale problem (4) in the following way.
The sub-scale velocity field® is averaged over the domady, resulting inu, which acts on the macro-
scale, while the flow on the sub-scale is drivahi®y macroscopic pressure gradient, in (5) denaigd a

3. Numerical Examples

In this section, a benchmark test is presentetiustriate the capability and performance of theppszd
method. The example illustrates the complex flovthef concrete over the reinforced area. The saiutio
based on the homogenization technique is verifgadrst a fully resolved solution computed by Direct
Numerical Simulation (DNS). The reinforced aredosated in the middle of the problem domain, so the
fluid is not forced to go through the reinforcingrd and the whole situation is closer to real ngsti
problems. The schematic setup of the situatiomibned in Fig. 2, bottom right corner. Uniform veity

is prescribed on the left side, no friction on thp and the bottom and zero “do nothing” boundary
condition on the right. The radius of the obstaaléhe RVE is chosen as r = 0.25. The fresh coadeet
modeled as a Bingham fluid. For numerical purposesused modified Bingham model, which has the
following form

To
T= —
D

+ 1—exp(— ]D>]D 6
Ho JE< exp(—m _|J; (6)

It has two physical parameters, plastic viscogifyand yield stress,. Additional parametem governs
how close the exponential curve of the modifiedgBizam model is to the original bilinear one. In the
numerical example, the parameters were chosep,as20Pa.s, Ty, = 20Pa, m = 15. The results
obtained from the homogenized procedure are inllexteagreement with the DNS, the maximal error is
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less than 13%. In presented examples, computatiimal in both approaches is comparable but we
assume that in more complex situations, the adgargathe multi-scale approach would be obvious.
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Fig. 2 Top left — fully resolved (DNS) pressureriisition. Top right — pressure distribution obtaith
with the homogenization approach, reconstructechftbe micro-scale. Bottom left Comparison of the
pressures along the haorizontal section accordinthtoscheme in the bottom left picture.

4. Conclusions

In this paper, the homogenization approach to flifwa Bingham fluid through a porous media is
presented. The paper presents unified formulatibmonpled Stokes and Darcy flows obtained by
consistent homogenization of Stokes flow in porsuts-domain.
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