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Abstract: In this paper we propose a mixture of two different normal distributions  to model heterogeneous of 
rail vehicles parameters. Maximum likelihood estimations of the parameters of mixture are obtained by using 

expectation algorithm. Illustrative examples based on real data ( speed, number of axles, length of train, 

number of railway carriage and mass of train) are given. 
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1. Introduction 

Monitoring the values of parameters of rail vehicles is a very important factor of safety in rail 
transportation. Values of these parameters are collected by DSAT system. This system screens the 

values of parameters of  rail vehicles with various types of construction of bearing axles and train 

brake. It is applicable to various diameters of the wheels. System DSAT is installed on a straight rail 
line. System DSAT finds the following symptoms: 

      improvement of temperature of a bearing axle, 

no working brakes – function, 

exceeded pressure on axle or exceeded linear pressure.  
deformation of surface wheels – function.  

The system DSAT registers the following values of parameters: 

speed [km/h], 
number of axles, 

length of train [m], 

      number of railway carriage, 

mass of train [t]. 
The values of these parameters are the heterogeneous sets. It is a result of the fact that the rail vehicles 

moving on the analyzed path execute different tasks, such as transportation of people and cargo. In this 

paper, we use the mixture model for investigating a complex distribution of parameters of the rail 
vehicles. The mixture model has a wide variety of applications in technical and life science. Because       

of their usefulness as extremely flexible method of modeling, finite mixture models have continued         

to receive increasing attention over the recent years, from both practical and theoretical points of view, 
and especially for lifetime distributions. The problem application of the mixture of distributions               

to lifetime analysis is considered by Knopik (2010). Fitting the mixture distributions can be handled by 

variety of techniques, this includes graphical methods, the methods of moments, maximum likelihood and 

Bayesian approaches (Titterington et al., 1985; McLachan & Basford, 1988; Lindsay, 1995; McLachlan & 
Peel, 2000; Furhwirth-Schnatter, 2006). Now extensive advances have been introduced in the fitting of 

the mixture models especialy via maximum likelihood method. Among all, the maximum likelihood 

method becomes the first preference due to the existence of an associated statistical theory. The maximum 
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likelihood method is making by expectation maximization algorithm (EM algorithm). The key property   
of the EM algorithm has been established in by Dempster et al. (1977) and McLachan & Krishan (1997). 

The EM algorithm is a popular tool for solving maximum likelihood problems in the context of a mixture 

model. We will focus on maximum likelihood techniques in this paper since the estimates tend                
to converge to true parameters values under general conditions. Maximum likelihood estimation 

procedures seek to find the parameters values that maximize the likelihood function evaluated at the 

observations. The purpose of this paper is to show that the mixture of the different normal distributions is 

the appropriate model distribution for the heterogeneous data of value of rail vehicle parameters.     

2. Model of distribution of parameters 

The fact that the analyzed sets are heterogeneous caused that in order to analyze the probability 

distribution of parameters of the rail vehicles is not applicable to the various distributions such  Weibull 

and gamma. In this paper, we analyze two-component mixture distribution of distributions as the 
distribution of examined parameters. Let X1 and X2  be the independent random variables with the density 

functions f1(x) and f2(x), the cumulative distribution functions F1(x) and F2(x), the reliability functions 

R1(x) and R2(x), the failure rate function (hazard function) λ1(t) and λ2(t). Reliability function of the 

mixture X1 and X2 is described by the following formula: 

 R(x) = p R1(x) + (1– p) R2(x) (1) 

where p is the mixing parameter and 0 ≤ p ≤ 1. 

The failure rate function of the mixture can be written as the mixture (Knopik, 2010): 

 λ(t) = ω(t) λ1(t) + (1 – ω(t)) λ2(t) (2) 

where λ(t) = f(t) / R(t), ω (t) = pR1(t) / R(t). Understanding the shape of the failure rate function is 

important in reliability theory and practice. 

The basic problem is to infer about unknown parameters, on the basis of a random sample of size         

n on the observable random variable X. The first opinion of the data from the DSAT system shows that 

the mixture of two normal distributions is a proper model for analyzed parameters. The density function 
of the mixture of two normal distributions can be written in the following form: 
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We will estimate five parameters  m1, m2, σ1, σ2, p of the density (3). To estimate parameters Θ = (m1, 

m2, σ1
2
, σ2

2
, p) we will use the likelihood method (see Hasti et al. 2001). The likelihood function for the 

mixture (3) is: 
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We compute the first partial derivative of the logarithm of likelihood function: 
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where A = f(xi; m1, m2, σ1
2
, σ2

2
, p). 

To find the maximum log – likelihood function, we set the first partial derivative equal to zero. In 
finite mixture model, the EM algorithm has been used as an effective method to find maximum likelihood 

parameters estimation. 

3. Real data set 

In this chapter, we will estimate  the parameters m1, m2, σ1
2
, σ2

2
, p of the mixture of two normal 

distributions for the random variable X1 – speed of train, X2 – number of axles, X3 – length of train, and 

X4 
 
– mass of train. By λ we describe the value of the goodness of fit statistics Kolmogorov-Smirnov.    

We used  procedure (EM algorithm) given for special case of normal mixtures by Hastie et al. (2001). 

The estimated parameters, K-S test statistics and p-values for four random variables are given in Table 1. 
All the considered the parameters of rail vehicles shown good conformity with the empirical distributions 

and the mixture distributions. 

Tab.1: Values of parameters of mixtures 

Random 

variable 

Parameters of mixture goodness of   

fit statistic      

λ-KS 

 

p-value m1 m2 1 2 P 

X1 – speed 51.27 78.11 7.82 2.69 0.531 0.3780 0.99 

X2 – axles 37.60 151.49 12.57 43.10 0.531 0.6102 0.85 

X3 – length 191.92 599.77 72.52 109.84 0.547 0.9153 0.56 

X4 – mass 381.66 2051.8 39.21 788.59 0.738 0.8543 0.53 

 

The graphs of the empirical distribution functions (Fe) and the mixture distribution function (Ft) are 

shown in Figure 1. 

 

 

Fig. 1: Empirical distribution function and distribution function of mixture model 
                             for number of the speed 
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A graphical comparison of empirical distribution function and distribution function of the mixture model 

for number of axles is given in Figure 2. 

2  

 
Fig.2: Empirical distribution function and distribution function of mixture model 

                             for number of axles 

4. Conclusions 

 
We use the mixture of two-normal distributions for investigating complex probability distributions of 

parameters of  the rail vehicles. It is shown that the mixture of the different normal distributions is useful 

for exploring the complex distributions. The probability distributions of all measured system parameters 
(speed, number of axles, length of rail vehicle, mass) are compatible with the calculated mixture of two 

normal distributions. Knowledge of the probability distributions of the load parameters of the railway line 

is useful for the design of the modernization of these lines. Lastly we fit the two-component mixture 

normal distribution to data set using EM algorithm to maximize the likelihood function. 
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