
 22nd International Conference  
ENGINEERING MECHANICS 2016 

Svratka, Czech Republic, 9 – 12 May 2016 

ROOT-FINDING METHODS FOR SOLVING DISPERSION EQUATIONS 
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Abstract: Contribution deals with the methods of rootfinding in a plate and cylindrical waveguide. The 
methods are based on: classic root-finding, interval arithmetics, Chebyshev interpolation, marching squares 
and marching triangles. All methods have been implemented both in Matlab (ChebFun toolbox) and Julia 
(ApproxFun module). 
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1. Interval arithmetic 

Wave propagation in thick plates is well solvable problem. One of part of task solution is to find the 
waveform dispersion curves. This problem has been chosen for the first trial using interval arithmetic 
(Moore, Kearfott & Cloud, 2009), because of its relative simplicity. In calculating the dispersion curves is 
needed to quantify the only trigonometric functions, hyperbolic functions, and square roots. All of these 
functions are already included in INTLAB (Rump, 1999) and therefore need not to be newly 
programmed. 

The thick plate is defined as that it has a nonzero thickness 2d and endless remaining dimensions. To 
calculate the stress wave propagation in plates it is used the integration along the dispersion curves for 
thick plates. These dispersion relations are (for the stress-free boundary conditions of the plate surfaces 
and for symmetric modes) defined as 

(ξ2 − 2)2 tanh(𝛾𝛾𝛾𝛾 �1 − 𝜉𝜉2)− 4 ∙ �1 − 𝜉𝜉2�1− 𝜅𝜅𝜉𝜉2 tanh(𝛾𝛾𝛾𝛾 �1 − 𝜅𝜅𝜉𝜉2) = 0, 

where γ is wavenumber (𝛾𝛾 = 2𝜋𝜋 𝜆𝜆⁄ ), ξ is the ratio of the phase velocity and the shear wave velocity 
and κ mean the ratio of the squares of the phase velocities for the plate’s material. 

To avoid computation in the complex domain it was necessary to break up calculation into the parts 
according to parameter ξ value (see Tab. 1) as the algorithm was implemented in INTLAB. For each 
interval are the equations shown in tab 1. To quantify the equations and finding the waveform dispersion 
curves is used interval arithmetic. 
 

Tab. 1: Dispersion equation:(𝜉𝜉2 − 2)2 ⋅ 𝛼𝛼 − 4 ⋅ 𝛽𝛽 ⋅ 𝑥𝑥1𝑥𝑥2 = 0 . 

 0 < 𝜉𝜉 < 1 1 < 𝜉𝜉 < 1/√𝜅𝜅 1/√𝜅𝜅 < 𝜉𝜉 

𝑥𝑥1 �1 − 𝜉𝜉2 �𝜉𝜉2 − 1 �𝜉𝜉2 − 1 

𝑥𝑥2 �1 − 𝜅𝜅𝜉𝜉2 �1 − 𝜅𝜅𝜉𝜉2 �𝜅𝜅𝜉𝜉2 − 1 

𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥2) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥2) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥2) 

𝛽𝛽 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥1) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥1)𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛾𝛾𝛾𝛾𝑥𝑥2) −𝑐𝑐𝑐𝑐𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥1)𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝛾𝛾𝑥𝑥2) 

Interval arithemic is an extension of arithmetic over real numbers, where for each real function 
f(x1, …, xn), the interval function F(X1, …, Xn) is called an interval extension of the function f if for each 
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intervals I1, …, In function F(I1, …, In) returns interval I such that ∀ y1 ∈ I1…∀ yn ∈ In(f(y1, …, yn) ∈ I). 
For other applications it is particularly important the interval Newton method, according to which each 
continuously differentiable function f each interval I must be ∀ a, x ∈ I, ∃ ε ∈ I(f(x) = f(a)+(x−a)fʹ(ε). 
Specifically then, the function f continuously differentiable on the interval I has all the roots in I in 
interval Na = a−(F(a)/Fʹ(I)) where a is an arbitrary element of I and F, Fʹ is an interval extension function 
of f, fʹ. 

For quantification of interval arithmetic was used MATLAB’s toolbox INTLAB, which are defined 
not only the basic functions for interval arithmetic, but their automatic differentiation too (Bücker, 
Corliss, Hovland, Naumann, & Norris, 2005). 

When trying to use the Newton method in INTLAB was needed to solve the problem by dividing 
intervals. INTLAB always returns the result ⟨-∞, ∞⟩ for each I/J where 0 ∈ J. However, for this case, it 
was necessary defined alternative way of dividing, when the interval is divided into two portions, and 
finding roots thus diverges into two tasks. The actual calculation is solved in recursive steps. In a single 
step in the equation Na = a−(F(a)/Fʹ(I)) is substituted middle I per a, yielding a new interval J = I∩Na. 
This one is used in the next recursive step. The calculation continues until the result interval width falls 
under a predetermined accuracy. 

2. Chebyshev interpolation 

To calculate the stress wave propagation for a longitudinal impact of semi-infinite thick cylindrical bars it 
is used the integration along the dispersion curves. These dispersion relations f(ξ, γa) is defined as 

(2 − 𝜉𝜉2)2 𝐽𝐽0(𝛾𝛾𝛾𝛾 𝐴𝐴) 𝐽𝐽1(𝛾𝛾𝛾𝛾 𝐵𝐵) + 4𝐴𝐴𝐵𝐵 𝐽𝐽1(𝛾𝛾𝛾𝛾 𝐴𝐴) 𝐽𝐽0(𝛾𝛾𝛾𝛾 𝐵𝐵) −
2𝜉𝜉2

𝛾𝛾𝛾𝛾
𝐴𝐴 𝐽𝐽1(𝛾𝛾𝛾𝛾 𝐴𝐴) 𝐽𝐽1(𝛾𝛾𝛾𝛾 𝐵𝐵) = 0, 

where a is radius of the semi-infinite bar, γ is wavenumber, ξ is the ratio of the phase velocity and the 
shear wave velocity, κ means the ratio of the squares of the phase velocities for the bar’s material, 
𝐴𝐴 = �𝜅𝜅𝜉𝜉2 − 1, 𝐵𝐵 = �𝜉𝜉2 − 1 and J is the Bessel function of the first kind. 

 
Summary of the Chebyshev expansion algorithm (Boyd, 1995): 

1. Choose the following: 
1. γa 
2. Search interval, ξ ∈ [a, b]. 

The search interval must be chosen by physical and mathematical analysis of the individual 
problem. The choice of the search interval [a, b] depends on the user’s knowledge of the 
physics of his/her problem, and no general rules are possible. 

3. The number of grid points, N. 
N may be chosen by setting N = 1+2m and the increasing N until the Chebyshev series 
displays satisfactory convergence. To determine when N is sufficiently high, we can examine 
the Chebyshev coefficients aj, which decrease exponentially fast with j. 

2. Compute a Chebyshev series, including terms up to and including TN, on the interval ξ  ∈ [a, b]. 

1. Create the interpolation points (Lobatto grid): 

𝜉𝜉𝑘𝑘 ≡
𝑏𝑏 − 𝛾𝛾

2
cos �𝜋𝜋

𝑘𝑘
𝑁𝑁
� +

𝑏𝑏 + 𝛾𝛾
2

,         𝑘𝑘 = 0,1,2, … ,𝑁𝑁. 

2. Compute the elements of the (N+1)×(N+1) interpolation matrix. 
Define pj = 2 if j = 0 or j = N and pj = 1,  j ∈ [1, N−1]. Then the elements of the 
interpolation matrix are 
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𝐼𝐼𝑗𝑗𝑘𝑘 =
2

𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑁𝑁
cos �𝑗𝑗𝜋𝜋

𝑘𝑘
𝑁𝑁
� . 

3. Compute the grid-point values of f(ξ), the function to be approximated: 

𝑓𝑓𝑘𝑘 ≡ 𝑓𝑓(𝜉𝜉𝑘𝑘),𝑘𝑘 = 0,1, … ,𝑁𝑁. 

4. Compute the coefficients through a vector-matrix multiply: 

𝛾𝛾𝑗𝑗 = �𝐼𝐼𝑗𝑗𝑘𝑘𝑓𝑓𝑘𝑘

𝑁𝑁

𝑘𝑘=0

,         𝑗𝑗 = 0, 1, 2, … ,𝑁𝑁. 

The approximation is 

𝑓𝑓𝑘𝑘 ≈�𝛾𝛾𝑗𝑗𝑇𝑇𝑗𝑗 �
2𝜉𝜉 − (𝑏𝑏 + 𝛾𝛾)

𝑏𝑏 − 𝛾𝛾 � =
𝑁𝑁

𝑗𝑗=0

�𝛾𝛾𝑗𝑗 cos �𝑗𝑗 cos−1 �
2𝜉𝜉 − (𝑏𝑏 + 𝛾𝛾)

𝑏𝑏 − 𝛾𝛾 ��
𝑁𝑁

𝑗𝑗=0

. 

3. Compute the roots of fN as eigenvalues of the Chebyshev–Frobenius matrix 
Frobenius showed that the roots of a polynomial in monomial form are also the eigenvalues of the 
matrix which is now called the Frobenius companion matrix. Day and Romero (2005) developed 
a general formalism for deriving the Frobenius matrix for any set of orthogonal polynomials. 

4. Refine the roots by Newton iteration with f(ξ) itself. 
Once a good approximation to a root is known, it is common to polish the root to close to 
machine precision by one or two Newton iterations. 

Computations were performed with the normalized Bessel functions that eliminate the large 
fluctuations in magnitude. For numerical experiments were used MATLAB’s toolbox CHEBFUN 
(Driscoll, Hale & Trefethen, 2014) and Julia’s package ApproxFun (ApproxFun). 

 

3. Conclusions 

Fig. 1 shows the dispersion curves as calculated using a classic root-finding algorithm and the Chebyshev 
method. It can be seen, that both approaches provide equivalent results. 

Both the interval arithmetic and the Chebyshev interpolation provide a robust method for finding the 
roots of the dispersion equation. 

For relatively low speed, these methods are not suitable to complete the calculation, it is however 
possible to use the first approach with low accuracy, or when using the Gaussian integration method 
along the dispersion curves. 
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Fig. 1: Dispersion curves computed using a conventional mode tracing algorithm (gray lines) and the 
Chebyshev method (black dots). 
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