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BEAM RESTED ON NONLINEAR ELASTIC FOUNDATION  
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Abstract: This work presents theory, approximations of experiments and numerical approaches suitable for 
the solution of straight plane beams rested on an elastic (Winkler's) foundation. The nonlinear dependence of 
the reaction force can be described via bilateral tangent-linear or secant-linear or nonlinear (linear + arcus 
tangent) approximations. These applications lead to linear or nonlinear differential equations of 4th-order 
(Central Difference Method, Newton-Raphson Method). 
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1. Introduction 

Beams on elastic foundations are frequently used in the practice. In mechanics, the beam is described by 

differential equation 
������ − ���	
� = 0, where � = ���� [m] is deflection of the beam, E [Pa] is the modulus 

of elasticity of the beam, ��� [m4] is the major principal second moment of the beam cross-section and q� = q���, �, … � [Nm-1] is the nonlinear reaction force in the foundation (Frydrýšek et al. 2013; 
Frydrýšek et al. 2014). Our work focuses on the solution of straight 2D beams on an elastic foundation 
with nonlinear behaviour (evaluation of experiments, curve fitting). For typical cases, the linear 
Bernouli's beam theory is coherent with nonlinear response of reaction force in foundation. 

2. Evaluation of Experiment 

The methodology for measuring of elastic foundation applied in this paper is based on the pressing of a 
beam into the foundation; see Fig. 1, Table 1 and reference (Klučka et al., 2014)) (i.e. dependence q� =  q���� which is based on the foundation load-settlement behaviour is evaluated and approximated). 

 

Fig. 1: Dependence of reaction force on deflection (i.e. foundation load-settlement behavior for a sand) - 
experiment and its suitable linear and nonlinear approximations. 

The measured nonlinear behaviour of reaction force on displacement in the foundation 
(i.e. dependence q� = q��) can be approximated by bilateral tangent-linear q�� or bilateral nonlinear q�� or bilateral secant-linear q�� functions; see Table 1 and Fig. 1. From Fig. 1, in comparing with 
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experiment, the best curve fitting is performed via nonlinear behaviour of foundation prescribed by 
function q�� = ��� + �!arctg�'!��. 

Tab. 1: Approximations for reaction forces in the foundation. 
Description Constants: 

Tangent-linear approx.: q�� = ���, linear diff. equation 
������ − (���	
� = 0. Good 

fitting for small values of v. 

k1=1.7422×1010 Nm-2, 
ka=0 Nm-2, ca=0 m-1. 

Nonlinear approx.: q�� = ��� + �!arctg�'!��, nonlinear diff. equation 
������ −(��)(*+,-./�0*���	
� = 0. Good fitting for all values of v (i.e. the closest to the 

experiment). 

k1=5.21×105 Nm-2, 
ka=9.52×106 Nm-2, 
ca=1.83×103 m-1. 

Secant-linear approx.: q�� = ���, linear diff. equation 
������ − (���	
� = 0. Good fitting 

for bigger values of v. 

k1=4.3866×108 Nm-2, 
ka=0 Nm-2, ca=0 m-1. 

3. Central Differences 

The FEM is frequently used for solutions of nonlinear problems. However, in this article, the central 
differences (CD) are applied for their easy derivation of problem. The CD proceed by replacing the 

derivatives �1���, �1�2�, �1�3� and �1�4� in the differential equations at the point "i" with step ∆ =  67 [m], 

where L [m] is length and n [1] is number of divisions. Hence, �1��� = ���� ≈ �9:�;�9<�2∆  ,   �1�2� = ������ ≈�9:�;2�9)�9<�∆�  , �1�3� = ������ ≈ �9:�;2�9:�)2�9<�;�9<�2∆� ,   �1�4� =  ������ ≈  �9:�;4�9:�)=�9;4�9<�)�9<�∆� , see Jones, 

1997 and Frydrýšek et al., 2014. 

4. Solved Example and its Boundary Conditions 

The beam of length 2L with cross-section b×h=0.2×0.4 m2 is resting on an elastic foundation and loaded 

by force F = 7×106 N; see Fig. 2. Beam properties are E = 2×1011 Pa, ��� = >?��2 = @.2×@.4��2 m4. Foundation 

properties are described as an evaluation of experiment in Tab. 1. The beam is symmetrical (i.e. it is 
sufficient to solve ½ of the beam �ϵ〈0; L〉). Hence, the beam is described by the equation 

 
������ − (��)(*!I0JK�0*���	
� = 0. (1) 

 

Fig. 2: Beam of length 2L resting on an elastic foundation and loaded by force F and divisions of the 
beam (CDM – one half of the beam). 

From the boundary conditions prescribed in points x = 0 m and x = L follow equations 

 

����L@��� = 0,M�� = 0� = − N2 => −P��� �����L@���� = − N2 => �����L@���� = N2�	
� ,
QR�� = L� = 0 => −P��� �����L6���� = 0 => �����L6���� = 0,M�� = L� = 0 => −P��� �����L6���� = 0 => �����L6���� = 0, STT

U
TTV

 (2) 

where M��� [N] is shearing force and QR��� [Nm] is bending moment. 
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5. Solved Example and Central Difference Method (CDM)  

The beam and its surroundings can be divided into n+5 nodes "i"; see Fig. 2. Denote for simplicity W =  N∆��	
�, X� = (�∆��	
�, X2 = (*∆��	
�  and ' = 6 + X�. Boundary conditions (2) can be approximated by CD, 

for node "0" (i.e. i = 0, � = 0) and for node "n" (i.e. i = n, � = L) as 

 

�9:�;�9<�2∆ = 0 => �� − �;� = 0,�9:�;2�9:�)2�9<�;�9<�2∆� = N2�	
� => �2 − 2�� + 2�;� − �;2 = W, ,�9:�;2�9)�9<�∆� = 0 => �7)� − 2�7 + �7;� = 0,�9:�;2�9:�)2�9<�;�9<�2∆� = 0 => �7)2 − 2�7)� + 2�7;� − �7;2 = 0.ST
U
TV

  (3) 

 Similarly, differential equation (1) can be approximated via CD for q��, q�� and q�� as 

 �1;2 − 4�1;� + �6 + X���1 − 4�1)� + �1)2 + X2arctg�'!�1� = 0,    i = 0,2, …, n, (4) 

Now, the variables �;2, �;�, �7)� and �7)2 (i.e. results in fictitious nodes -2, -1, n+1 and n+2, see 
Fig. 2) can be expressed from boundary conditions (3). Hence the set of nonlinear equations can be 
written in the matrix form as 

 _̂ = `Mbc�d + X2arctg�'!c�d� − cbd = 0, (5) 

where  

 `Mb =
fg
ggg
ggg
h ' −8 2 0 0 0 0 … 0−4 7 + X� −4 1 0 0 0 … 01 −4 ' −4 1 0 0 … 00 1 −4 ' −4 1 0 … 0⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ … ⋮0 … 0 1 −4 ' −4 1 00 … 0 0 1 −4 ' −4 10 … 0 0 0 1 −4 5 + X� −20 … 0 0 0 0 2 −4 2 + X�op

ppp
ppp
q

, cWd = rW0⋮0s , c�d = r�@��⋮�t
s (6) 

6. Iterative Approach and Solutions 

The system of coupled nonlinear equations can be solved iteratively via Newton–Raphson Method as 

 u �〈v)�〉 w = u �〈v〉 w − x J〈v〉 z;� {`Mb u �〈v〉 w + X2arctg |'! u �〈v〉 w} − cbd~, (7) 

where vectors u �〈v)�〉 w and  u �〈v〉 w are new and old iterations and matrix x J〈v〉 z =  � ��9� ��〈�〉 �1,�L@,�,2,…,7 is the 

Jacobian matrix. Some results are presented in Fig. 3. 

 

Fig. 3. Dependence for bending moment and distributed reaction forces on coordinate x of the beam for 
different types of foundation approximations. 

 The differences between the linear and nonlinear approximations are evident. 
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7. Conclusions 

The use of an elastic foundation including nonlinearities is a suitable way of performing 
numerical/experimental modelling of engineering problems in the branch of mechanics and 
biomechanics; see some applications in references (Frydrýšek et al., 2013). Our team is in the process of 
application of elastic foundation as a suitable simplification of the complicated interaction between 
implants and bones in traumatology and orthopaedics, see Fig. 4. 

 

Fig. 4. The intramedullary nail C-NAIL for minimal-invasive fixation of intraarticular calcaneal fractures 
(application of FEM and evaluation as structures on elastic foundation). 

The derivation, rapid solutions and application of our own simple numerical model based on the 
Central Difference Method (CDM) open up a new avenue for further applications using a stochastic 
approach (i.e. millions of solutions with random inputs). The Simulation-Based Reliability Assessment 
Method (i.e. the direct Monte Carlo approach) can be applied. For more information see (Frydrýšek et al., 
2013; Marek et al., 1995). 

This work is a continuation of our previous work. The measured material properties of the elastic 
foundation were evaluated and approximated in three ways (via bilateral tangent-linear, bilateral 
nonlinear and secant-linear functions). Beams on elastic linear/nonlinear foundations were solved via 
CDM and Newton’s (Newton-Raphson) Method. 

Theory, experiment, CDM and numerical approach are exposed for the beams rested on 
linear/nonlinear foundations. The best approximation is the bilateral nonlinear function q�� = ��� ++�!arctg�'!��. 
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