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THEORY, EXPERIMENT AND NUMERICAL APPROACH FOR THE
BEAM RESTED ON NONLINEAR ELASTIC FOUNDATION

K. Frydrysek*, S. Michenkové”

Abstract: This work presents theory, approximations of expernits and numerical approaches suitable for
the solution of straight plane beams rested onlastie (Winkler's) foundation. The nonlinear depence of
the reaction force can be described via bilateeidgent-linear or secant-linear or nonlinear (lineararcus
tangent) approximations. These applications leadirtear or nonlinear differential equations of"4rder
(Central Difference Method, Newton-Raphson Method).
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1. Introduction

Beams on elastic foundations are frequently usdtdamractice. In mechanics, the beam is desctiyed
dr
Ejzr
of elasticity of the beanj,; [m¥ is the major principal second moment of the beaoss-section and
qr = qr(x,v,...) [Nm?] is the nonlinear reaction force in the foundatigfrydrySek et al. 2013;
FrydrySek et al. 2014). Our work focuses on thaitsmh of straight 2D beams on an elastic foundation
with nonlinear behaviour (evaluation of experimentsirve fitting). For typical cases, the linear
Bernouli's beam theory is coherent with nonlinesponse of reaction force in foundation.

differential equationZ% - = 0, wherev = v(x) [m] is deflection of the beank, [Pa] is the modulus

2. Evaluation of Experiment
The methodology for measuring of elastic foundatapplied in this paper is based on the pressira of
beam into the foundation; see Fig. 1, Table 1 sfdrence (Kldka et al., 2014)) (i.e. dependence

gr = qr(v) which is based on the foundation load-settlemehtiiour is evaluated and approximated).
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Fig. 1: Dependence of reaction force on deflecf{ia foundation load-settlement behavior for adan
experiment and its suitable linear and nonlineapiagximations.
The measured nonlinear behaviour of reaction fome displacement in the foundation
(i.e. dependencgg = qgr,) can be approximated by bilateral tangent-linggr or bilateral nonlinear
qg, Or bilateral secant-lineagg, functions; see Table 1 and Fig. 1. From Fig. 1camparing with
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experiment, the best curve fitting is performed wui@nlinear behaviour of foundation prescribed by
functionqgr, = k,v + kgarctg(c,v).

Tab. 1. Approximations for reaction forces in tberidation.

Description Constants:
Tangent-linear approx.: qg, = k;v, linear diff. equatio FZ— kl—v = 0. Good | ki=1.7422x16°Nm?,
fitting for small values o¥. ke=0 Nm?, =0 nt*.
4
Nonlinear approx.: qg, = kv + ksarctg(c,v), nonlinear diff. equatioéx—’j - ki=5.21x16G Nm2,
%ﬁg“a”) = 0. Good fitting for all values of (i.e. the closest to the ke=9.52x10Nm?,

: C.=1.83x1Gm™.
experiment).

klv

Secant-linear approx.:qg, = kv, linear diff. equauon—"— = 0. Good fitting ki=4.3866x18 Nm2,
for bigger values o¥. ka=0 Nn?, c=0 n™.

3. Central Differences

The FEM is frequently used for solutions of nondingroblems. However, in this article, the central

differences (CD) are applied for their easy deioratof problem. The CD proceed by replacing the
(1) (2) (3) (4)

derivativesv; ™, v, andv; ™ in the differential equations at the point "i" wvistepA = - [m],
d _ 2
where L[m] is Iength and 1] is number of divisions. Hence " = =T x T v® = d_x;’ ~
Vit1=2Vi+Vi-1 (3) vV Vit =2Vit1+2Vi1 Vi (4) _ d* Vi —4Vip1 +6Vi—4Vi_1+Vi
A2 g dx3 = 203 o Vi = a s A , see Jones,

1997 and FrydrySek et al., 2014.

4. Solved Example and its Boundary Conditions

The beam of length 2L with cross-section bxh=0.2xf is resting on an elastic foundation and loaded

3
by force F = 7x1®N; see Fig. 2. Beam properties &e 2x10* Pa,J,; = & = %m“’. Foundation

properties are described as an evaluation of axpati in Tab. 1. The beam is symmetrical (i.e. it is
sufficient to solve ¥z of the beawa(0; L)). Hence, the beam is described by the equation

d*v  kyv+kgarctg(cyv)

=0. 1
dx* E]ZT ( )
2
A
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Fig. 2: Beam of length 2L resting on an elasticridation and loaded by force F and divisions of the
beam (CDM — one half of the beam).

From the boundary conditions prescribed in paintsO m andk = L follow equations

dv(x=0) _ \
dx 0,
3y
T(x _ 0) _ ___> E]ZTd v(x 0) _ _E:> d v(x3—0) _ F '
2 dx ZEJZT \ (2)
2 —
My(x = L) = 0 => EJZT”“’(" Dopo=>D oy,
3y
T(x=1)=0=> wnd“x” 0=>222 oy,

whereT (x) [N] is shearing force ani,(x) [Nm] is bending moment.
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5. Solved Example and Central Difference Method (CDM)

The beam and its surroundings can be divided irt® nodes "i"; see Fig. 2. Denote for simplicity
3 4 4
b= l, a; = ﬂ, a, = kel andc =6+ a;. Boundary conditions (2) can be approximated by CD
E]ZT E]ZT E]ZT
for node "0" (i.ei = 0,x = 0) and for node "n" (i.ed.=n,x = L) as

Vit1—Vi-1 __ _ _ _
- = 0=>v v =0, )

Vigz—2Vj41+2Vi—1 Vi _ F

= =>v,—2v;+2v_1—v_,=b
2A3 2E] 77 2 1 1 2 ’» (3)
Vig1—20itVi-1 _ 4 _ _
A—2_0_>vn+1—2vn+vn_1_0
Vig2—2Vi41+2Vji—1— Vi
2A3

Similarly, differential equation (1) can be apgroated via CD foqu, qr, andqg, as

I
=0=> vy, — 2Up4q + 201 — =0.)

Vi_p —4vi_q1 + (6 + a)v; — 4vj4q + Vigo + ayarctg(c,v) =0, 1=0,2, ...,n, (4)

Now, the variable_,, v_;, v,41 andv,,, (i.e. results in fictitious nodes -2, -1, n+1 ameR, see
Fig. 2) can be expressed from boundary conditi@)s lence the set of nonlinear equations can be
written in the matrix form as

fi = IMl{v} + ayarctg(c,{v}) — {b} =0, (5)
where
c -8 2 0 0 0 0 0
4 7+a, -4 1 0 0 0 0
1 -4 ¢ -4 1 0 0 0
0 1 -4 ¢ -4 1 0 .. 0 g 1;0
. . . . . . . . 1
[M] =] : : : - : : : ,{b} = : v} = : (6)
0 0 1 -4 ¢ -4 1 0 : i,
0 0 0 1 -4 ¢ —4 1 0 n
0 0 0 0 1 -4 5+a -2
0 0 0 0 0 2 -4 2+aq

6. Iterative Approach and Solutions
The system of coupled nonlinear equations can edderatively via Newton—Raphson Method as

{(j+1) v} _ {‘”v} _ [<i>]]'1 {[M] {%} + ayarctg (Ca {m”}) B {b}}’ @

where vector{‘j“)v} and {(j)v} are new and old iterations and ma{r‘ii?q] = <a(a].)f ! > is the
Yk /i k=012

Jacobian matrix. Some results are presented ir8Fig.
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Fig. 3. Dependence for bending moment and dis&ithueaction forces on coordinate x of the beam for
different types of foundation approximations.

The differences between the linear and nonlinppraximations are evident.
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7. Conclusions

The use of an elastic foundation including nonliitess is a suitable way of performing

numerical/experimental modelling of engineering peans in the branch of mechanics and
biomechanics; see some applications in refererngsrfySek et al., 2013). Our team is in the proadss

application of elastic foundation as a suitable pdification of the complicated interaction between
implants and bones in traumatology and orthopaedes Fig. 4.

Total Deformation

Type: Totsl Deformation
Unit: mm

Tirne: 1

0,6406 Max

0,14173 Min

Fig. 4. The intramedullary nail C-NAIL for minimadvasive fixation of intraarticular calcaneal fragies
(application of FEM and evaluation as structuresaastic foundation).

The derivation, rapid solutions and applicationoof own simple numerical model based on the
Central Difference Method (CDM) open up a new aeemr further applications using a stochastic
approach (i.e. millions of solutions with randonpus). The Simulation-Based Reliability Assessment
Method (i.e. the direct Monte Carlo approach) carapplied. For more information see (FrydrySek.et a
2013; Marek et al., 1995).

This work is a continuation of our previous workhelmeasured material properties of the elastic
foundation were evaluated and approximated in thsmegys (via bilateral tangent-linear, bilateral
nonlinear and secant-linear functions). Beams agstiel linear/nonlinear foundations were solved via
CDM and Newton’s (Newton-Raphson) Method.

Theory, experiment, CDM and numerical approach arposed for the beams rested on
linear/nonlinear foundations. The best approxinmai® the bilateral nonlinear functiagg, = kv +

+kgarctg(c,v).
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