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Abstract:  The horizontally driven two-degrees of freedom spherical pendulum is an auto-parametric system 
which exhibits a wide variety of response types. Depending on the amplitude and frequency of the excitation 
the response can vary from stationary to chaotic regime. It has been already shown that the response can be 
described using time variable parameters of an inscribed ellipse. Such a description has a potential to close 
the gap between description of stationary, quasi-periodic and chaotic types of response. This study presents 
methodology and results of an analysis of the experimentally measured data providing the time dependent 
parameters of a twisting ellipse. The obtained results are discussed and some open problems are indicated. 
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1. Introduction 

The spherical pendulum, which is kinematically driven in its suspension point, is a very popular auto-
parametric system. In fact it is the simplest system, which exhibits complex response types, ranging from 
stationary periodic response to chaotic regime for certain driving conditions. Thus, many authors dealt 
various aspects of behaviour of the spherical pendulum until now, however, most of them are referencing 
papers by J. Miles (1962, 1984), where the weakly non-linear resonant response of a damped spherical 
pendulum is discussed. Among other papers dealing with aspects close to currently discussed topic can be 
mentioned, e.g., Petrov (2005) and Leung (2006), who analysed various types of kinematic or force 
excitation in suspension, where the harmonic excitation in the suspension point in both vertical and 
horizontal directions are considered. The experimental verification of the theoretical model was carried 
out by Tritton (1986).  

Contribution of the authors to theoretical description of behaviour of the spherical pendulum 
comprises several publications; see, e.g., Náprstek & Fischer (2009, 2013). In first paper the non-linear 
mathematical model was introduced and its stability was analysed using 
the harmonic balance approach. In the latter paper, the concept of 
“virtual ellipse” was introduced and used for analysis of the quasi-
periodic part of the response. The research was later supplemented by an 
experimental work by Pospí!il et. al (2014). The experimental setup was 
aimed to study the influence of uneven damping in both directions 
(lateral and transversal) with respect to direction of excitation. The 
current work returns to the concept of “virtual ellipse” and uses the 
experimental data to illustrate validity of the mathematical model. 

2. Theoretical model  

The mathematical model of the spherical pendulum follows from the 
mechanical energy balance. Using the Hamilton principle and quadratic 
form of the Rayleigh function, a system of two Lagrange equations in 
Cartesian coordinates can be set up, for details see Náprstek & Fischer 
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Fig. 1: Sketch of the system. 
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(2009) and Fig. 1. Neglecting terms of order !!!!!!!!! ! !!! ! !!!!!!, the approximate system reads:  
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Here ! stands for horizontal component of the response in direction of the excitation ! ! !!!!, while 
! describes the transverse motion. Symbols !! ! represent mass and suspension length of the pendulum 
and !! !!!  are the coefficients of linear viscous damping in the individual directions. The natural 
frequency of the corresponding linear pendulum is !!! ! !!!. The above equations are mutually 
independent if only the linear terms are considered; their interaction is given by the non-linear terms only.  

With respect to assumption of the harmonic excitation and continuous character of the mathematical 
model and taking into account previously obtained analytical, numerical, and experimental results the 
system response can be approximated by following expressions: 

! ! ! !! ! !"#!" ! !! ! !"#!"!!!!!!!!!!! ! !!!!!!"#!" ! !!!!!!"#!" (2) 

The partial amplitudes !!!!!! !!!!!! !!!!!! !!!!! in Eqs (2) 
are supposed to be the functions of a “slow” time and ! is 
the driving frequency of harmonic excitation. 
Enumeration of these amplitude functions is possible if 
the harmonic balance procedure is applied on the original 
system (1). As a result, a system of four first order 
ordinary differential equations can be obtained. Properties 
of the partial amplitudes reflect properties of different 
response types of the pendulum. The assumed solution (2) 
represents a parametric form of an ellipse in central 
position. It can be outlined in components !! ! see Fig. 2, 
where ! ! !!!! is orientation of principal axes; 
!! ! !!!!! is the length of major axis and !! ! !!!!!- 
length of minor axis. 

The three parameters !!!!!!! determining properties of the inscribed ellipse are again functions of 
“slow” time. Variability of these functions is the same as variability of partial amplitudes (2). Their 
relation to the partial amplitudes is given as (see Náprstek & Fischer (2009) for details):  
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where !!!! !!! are given as  

!!! ! !!! ! !!! ! !!! ! !!!!!!!!!! !! !!!!! ! !!!!!!!!!! (4) 

The orientation of principal axes is given as: 
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 (5) 

The curvature of the !! ! trajectory considered as a planar curve is given as (Ruttler 2000): 

!!!!! !
!! ! !!

!

!! ! !!
!  (6) 

The approximation algorithm will be based on curvature of the experimental trajectory. 

 
 Fig. 2: Description of an ellipse in 

the xy plane 
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3. Approximation of experimental data 

The ellipse in central position, which is supposed to approximate the experimental data !!! ! !!!, is fully 
described by three time dependent parameters !!!!!!!. The general expression reads: 

!! ! !! !"#! !"#!" ! !! !"# ! !"#!"!!!!!!!!! ! !! !"#! !"#!" ! !! !"#! !"#!" (7) 
The experimental (measured) data describe the trajectory of the pendulums bob in time; the driving 
frequency is ! known.  In following it is assumed, that the measured data are filtered in such a way that 
they do not contain any spurious oscillations and thus that they represent a sufficiently smooth functions. 
This assumption eliminates cases when the trajectory degenerates into a line segment. 

The basic idea of the algorithm is simple. In the first step, the maxima of the curvature of the 
experimental data have to be found. The radius vectors then allow determining orientation ! of the ellipse 
and lengths of both major axis !! and minor axis !! at the corresponding time instants:  

!! ! !! ! !! !!!!!!!! !
!!
!
!!!!!!! ! !"#!!

!!
!!

 (8) 

The relations (8) are valid for static ellipse; however, they provide  sufficiently accurate initial values 
for subsequent optimization. This behaviour is illustrated in Figs. 3. Plot (A) shows the expected 
interpolation of the artificial data, which originate from discretization of a rotating ellipse (7), whereas the 
plot (B) uses real measured data. In both plots the dark solid lines represent the data to be approximated 
and dark dashed lines correspond to the ellipses inscribed in points of maximal curvature (shown as black 
dots). In case (A) the normal direction (dotted line) in the point of maximal curvature directs correctly to 
the origin. Thus, the approximation by an ellipse in central position is correct. For real measured data (B) 
is the incidence of the trajectory and approximating ellipse not as good. The normal direction in the point 
of maximal curvature (thin dotted lines) deviates from the radius vectors (thin dashed lines) significantly 
and the data trajectory is not symmetrical with respect to the normal. On the other hand, it seems that the 
ellipse in central position still provides acceptable approximation. Indeed, when the osculating circle 
(dotted circle) is shifted towards radius vector (dashed circle) in plot (B), it provides better approximation 
of the experimental trajectory than the osculating circle in the sense of least squares. 

It seems that a similar approach can be used for points of minimal curvature; these points should 
directly provide length of the minor axis !!. Unfortunately, because the trajectories are partly almost 
straight the search for a minimum leads to an ill-conditioned problem. On the other hand, the point of 
minimal curvature could be determined approximately dividing the angle between radius vectors of two 
adjacent points of maximal curvature or dividing the length of the arch. Because the curvature in such 
parts of the trajectory is low, the introduced error would be small and an additional point can improve the 
overall accuracy. 

          

Fig. 3: Approximation of the rotating ellipse. (A) idealized case, (B) measured data. Thick solid curve - 
approximated data, thick dashed curve – inscribed ellipse, dotted circle - osculating circle 
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Figure 4 presents an example result of real 
approximation. The original data trajectory is shown 
as a solid curve, approximating ellipse (7) is dashed. 
The points of maximal curvature are indicated using 
black dots, starting point is denoted by a small 
square. It should be noted that the approximation in 
Figure 4 uses only curvatures computed in vertices of 
the ellipses. The numerically obtained values of 
!!!!!!! were linearly interpolated as well as the 
computed “frequencies” ! ! !!!", which varied 
slightly around the driving frequency of the 
pendulum (!" is the time difference between two 
instants of maximal curvature). The time coordinate 
had to be adjusted by introduction of a time (phase) 
shift in intervals between two instants of maximal 
curvature. No additional numerical optimization has 
been performed for results shown in Figure 4. For 
real usage, it would be worth to smoothen the 
obtained functions and improve the agreement using 
the least squares optimization method. 

4. Conclusions 

One of promising approaches for description of movement of the spherical pendulum is based on rotating 
ellipses. Presented contribution sketches out a procedure, which matches the experimental data to the 
theoretical model. The data are supposed to be sufficiently smooth or  approximated by a smooth curve 
(e.g. spline). The approach based on observation of the curvature of the measured trajectory and usage of 
the extremal values to enumerate desired parameters proves to be usable.  Using of non-extremal curvature 
values is feasible, but it brings some additional difficulties. Although it was not shown in this 
contribution, the similar approach is usable – after some modification – even for cases where the 
trajectory forms more complex geometrical curves (e.g., lemniscate). However, the degenerated cases 
(zero or infinite curvature) have to be dealt separately.  

The presented approach is based purely on geometric curvature of the observed trajectory. It could be 
improved utilizing other geometrical relations. Compared to more traditional least squares interpolation 
approach the presented procedure can very quickly provide the approximate results. If necessary, these 
data could serve as a good initial approximation for subsequent optimization. 
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Fig. 4: Approximation of experimental data 
(solid) by the rotating ellipse (7), (dashed). 
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