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Abstract: Two Drucker-Prager criteria are employed to define a nonlinear material model for concrete that 

is capable to solve tri-axial analysis of plasticity. The model consists of one Drucker-Prager criterion set to 

approximate tensile stress area and the other to describe compression area. The first derivative singularities 

are treated by using an imaginary tangent as a local yield function and the model is modified for specific 

application for the plane stress state. The model is implemented into the SIFEL solver using the finite element 

method. 
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1. Introduction 

Since behaviour of concrete in tension and compression is diverse, single yield criterion for this material is 

not sufficient enough to describe both stress areas. In this case, two Drucker-Prager yield criteria can be 

employed to form a concrete plasticity model capable to capture more general stress-strain states. 

Combining these two criteria nevertheless leads to the first derivative singularities which need to be treated 

separately. Compared to other concrete models, e.g. Drucker-Prager + Tresca (Feenstra & de Borst, 1996), 

this plasticity model incorporates less singularities. Moreover, whole plasticity calculation of the model can 

be performed at the level of stress invariants and the treatment of the singularities can be thus considerably 

simplified. The model is also modified for the plane stress state where the correction of the out-of-plane 

elastic strain is needed. The model has been implemented into the SIFEL software package (Krejčí, 

Koudelka & Kruis, 2011) using the finite element method. 

In the first part of the paper, the principle of general plasticity and the single Drucker-Prager criterion 

is described. The second part is dedicated to the treatment of the singularities and especially to the out-of-

plane strain correction regarding the plane stress state. In the end, an example of calculation using the model 

is presented where the correction for the plane stress state should be demonstrated. 

2. Plasticity in finite element method 

The state, in which material exhibits plastic flow, is generally expressed by the following yield criterion 

   0, qσf  (1) 

where 𝝈 is the stress vector, q is the vector of internal variables and f is the yield function. If values of the 

yield function are negative f < 0, material is located in the elastic stress area. Stress states where the yield 

function provides positive values, are not admissible. 

Assuming elastoplastic behaviour and small strains, relation between stress and strain can be 

determined by 

  
pe εεDσ   (2) 
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where 𝜺 is total strain vector, 𝜺𝑝 is plastic strain vector and De denotes elastic stiffness matrix. In the case 

of the concrete plasticity model, the associated flow rule is selected as an expression of plasticity 
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where �̇�𝑝 represents the rate of plastic strains, �̇� is the rate of plastic multiplier that indicates the magnitude 

of plastic strains, and the gradient of the yield function dictates the direction of plastic flow. 

A nonlinear analysis is usually carried out by an iterative calculation with increments of load. As the 

first step, the evaluation of the trial stress state 𝝈𝑡𝑟 is performed using the following expression 
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where the superscript n indicates the iteration step of the global iterative procedure. The trial stress state 

that is calculated from total strains of the current step and plastic strains of the previous step, is determined 

whether it belongs to the admissible stress area. If it does, no further computation of plasticity is performed. 

Otherwise, the trial stress state is necessary to return to the admissible stress area by, for example, the 

cutting plane method (de Souza Neto, Perić & Owen, 2008). 

Assuming incremental calculation, eq. (3) can be rewritten as 
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The cutting plane method is specifically used for determination of the increment of the plastic multiplier 

∆𝛾. With the help of the newly calculated increment of the plastic strain vector using eq. (5), the corrected 

stress state is then possible to evaluate 
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3. Double Drucker-Prager concrete plasticity model 

The single Drucker-Prager plasticity is described by the following yield function 

       021   σσσ JIf  (7) 

where 𝜏0 is the parameter representing shear strength and the parameter 𝛼𝜙 is connected with friction angle. 

I1 is the first invariant of the stress tensor and J2 is the second invariant of the deviatoric stress tensor. 

Exploiting of these two yield functions with different setup of the parameters leads to a suitable plasticity 

model that describes concrete in both compression and tension (Jirásek & Bažant, 2002). By employing 

concrete strength in single compression fc and in biaxial compression fb, parameters for yield function that 

approximates compressive behavior, can be calculated 
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 a) b) 

Fig. 1: Double Drucker-Prager criterion: a) coordinate system of stress invariants, b) plane stress state 
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The tensile stress area can be then described by adding concrete strength in tension ft 
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The resulting yield surface, created by two separate Ducker-Prager yield criteria, is represented by an 

angular cone whose characteristic sections are displayed in fig. 1. 

4. Singularities treatment 

As depicted in fig. 1a, the first derivative singularities are located at the vertex of the cone and at the 

intersection of the criteria. By these singularities, so called stress return areas are established where the 

value and the derivative of the relevant yield functions are evaluated. The whole problem is solved at the 

level of the stress invariants and the derivative of the yield functions are substituted by 
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Return to the point of the first derivative singularity is solved by using an imaginary tangent which is 

defined as a normal to the connecting line between the singularity and the trial stress state point. The tangent 

serves as a local yield function and its value together with its derivative is used further in calculation, 

specifically in the cutting plane method. 

5. Correction for plane stress state 

The plane stress state is constrained by the following expressions 

 00  yzxzyzxzz  . (11) 

Elastic stiffness matrix for the plane stress state is derived from general Hooke’s law in a way that it is 

assumed that, apart from other conditions, the component 𝜎𝑧 is in elastic form equal to zero. However, if a 

tri-axial plasticity model is used, a stress return algorithm usually generates in the case of the plane stress 

state non-zero out-of-plane stress component 𝜎𝑧 which may negatively influence whole plasticity 

calculation. Stress correcting procedure that deals with this problem, has been firstly suggested by (Aravas, 

1987) and the following algorithm, used in SIFEL, has been designed by (Dodds, 1987). 

The non-zero stress components together with corresponding strains are assembled as follows 

    122211122211 2,   εσ
T

. (12) 

In the first step of the procedure, a trial out-of-plane strain component is calculated 
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As the next step, a stress return algorithm is called while using an extended stiffness matrix (as for 

axisymmetric problem) for calculating trial stresses 
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After the stress return algorithm is finished, the stress state [𝝈𝑇 𝜎33]
𝑇 that satisfies a plasticity criterion, 

is obtained. The stress correcting algorithm is terminated if the out-of-plane stress component 𝜎33 is lesser 

than tolerable inaccuracy. Otherwise, the following correction of the out-of-plane strain is applied 
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where D44 is the element of the extended stiffness matrix at the 4,4 position. The newly acquired out-of-

plane strain then enters to the stress return algorithm and again the value of the out-of-plane stress 
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component is tested. This procedure continues until the required value of the out-of-plane stress is reached. 

The general iterative form of eq. (15) can be then written as 
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6. Calculation example 

The plasticity model is tested on the example of a concrete beam with following parameters: 0.6 m height, 

3.6 m length, 0.3 m depth, concrete C30/37 fc = 30 MPa, ft =3 MPa, fb = 1.2 fc. The beam is fixed alongside 

the left edge and loaded by vertical force at the upper right corner. The results are shown for the 33,5 kN 

value of the loading force. In accordance to the development of the plastic multiplier (fig. 2), the distribution 

of the out-of-plane stress component can be observed from fig. 3. In the areas where behaviour of concrete 

is elastic, the out-of-plane stress is automatically equal to zero. However, in the case of the plastic yielding 

area, minor values that corresponds with tolerable inaccuracy (1 kPa), can be recognized at the upper left 

edge. These small values in the plastic yielding area prove the presence of the stress correcting algorithm 

inside the plasticity model. 

 

Fig. 2: Development of cumulative plastic multiplier [-] 

 

 

Fig. 3: Out-of-plane stress 𝜎33 distribution [Pa] 

7. Conclusions 

The concrete plasticity model using two Drucker-Prager criteria has been presented in the paper while 

emphasizing the solution of the first derivative singularities and the importance of the stress correcting 

algorithm in case of the plane stress state. The validity of the algorithm has been demonstrated in the plastic 

yielding area of the concrete beam. 
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