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 NUMERICAL SOLUTION OF A SECULAR EQUATION FOR 
RAYLEIGH WAVES IN A THIN SEMI-INFINITE MEDIUM MADE OF A 

COMPOSITE MATERIAL 

J. Červ*, V. Adámek**, F. Valeš*, S. Parma* 

Abstract: The traditional way of deriving the secular equation for Rayleigh waves propagating along the 
stress-free edge of a thin semi-infinite composite is presented. It means that it is necessary to find a general 
steady-state solution that vanishes at infinity. The secular equation is then obtained by vanishing of the 
surface traction at the stress-free edge. For the solution of such secular equation it is necessary to 
precompute some roots of characteristic quartic equation. The method shown in this paper, based on 
displacement formulation, leads to the so-called implicit secular equation. The numerical approach to the 
solution is shown. 
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1. Introduction 

A thin semi-infinite composite structure is considered. The kind of the composite material in mind is one 
in which a matrix material is reinforced by strong stiff fibres which are systematically arranged in the 
matrix. The fibres are considered to be long compared to their diameters and the fibre spacing, and to be 
densely distributed, so the fibres form a substantial proportion of the composite. A composite of this kind 
for sufficiently long wavelength can be regarded as a homogeneous orthotropic material. It is also 
assumed that composite thickness is small compared to the shortest wavelength taken into account. Under 
these conditions one can consider the composite structure as an orthotropic solid in the state of plane 
stress. The traditional way of deriving the secular equation for Rayleigh-edge waves propagating in the 
direction of the 1x - axis in a thin semi-infinite composite 2 0x ≥  is to find a general steady-state solution 
for the displacement components that vanishes at 2x = +∞ . The secular equation is then obtained by 
vanishing of the surface traction at 2 0x = . For the solution of such secular equation it is necessary to 
precompute some roots of characteristic quartic equation. The method shown in this paper (based on 
displacement formulation) leads to the so-called implicit secular equation. The details can be seen in the 
paper Cerv & Plesek (2013). 

 
2. Preliminaries  

We suppose that material and body axes of the 2D orthotropic linear elastic medium in the state of plane 
stress are denoted by X1, X2 and x1, x2 respectively. The third axis x3 is identical with the material axis X3 
and constitutes axis of possible rotation (through an angle ϑ ) of the principal material axes X1, X2 from 
thre body axes x1, x2, see Fig. 1. Due to the plane stress it holds σ33 = σ23 = σ13 = 0. For considered 
material, the relationship between the stress σij and strain εij components is given by the formula (1), 
where Cij = Cij(ϑ) denote the elastic stiffnesses. 
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The strain components εij are related to the displacement components u1, u2 through 

( ), ,2 .ij i j j iu uε = +                                                                        (2) 

The equations of motion, written in the absence of body forces, are  

, ,ij j iuσ ρ= ⋅                                                                              (3) 

where ρ is the mass density and the comma denotes differentiation with respect to xj. 

 
Fig. 1: A thin semi-infinite orthotropic medium. 

3. Solution  

Equations of motions in terms of displacements are considered, see Cerv & Plesek (2013). The solution to 
these equations is supposed in the form 
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where k is the wavenumber, c the unknown velocity and q a complex parameter dependent on i jC , c and 
ρ . It is stipulated that Re( ) 0q < . This solution represents a harmonic wave propagating in the positive 
direction of the 1x -axis. Boundary conditions can be stated as 

2 2
1 1 2 2 1 2lim ( , , ) lim ( , , ) 0 ,

x x
u x x t u x x t

→+∞ →+∞
= =                                                           (5) 

12 22 20 at 0 .xσ σ= = =                                                                     (6) 

Substituting (4) into equations of motions one obtains a homogeneous system for displacement 
amplitudes, 01 02,U U   as 

2 2 2 2 2 2
11 16 66 01 16 12 66 26 02[ 2i ] [ i ( ) ] 0 ,k C kqC q C k c U k C kq C C q C Uρ− − − + − + − =  

2 2 2 2 2 2
16 12 66 26 01 66 26 22 02[ i ( ) ] [ 2i ] 0.k C kq C C q C U k C kqC q C k c Uρ− + − + − − − =                 (7) 

This system will have a nontrivial solution if and only if its determinant vanishes. This leads to a quartic 
characteristic equation in : ip q= , which may be written as 

4 3 2 2 3 4 0 .Ap Bk p Ck p Dk p Ek+ + + + =                                                       (8) 

Due to the boundary condition (5) we are only interested in the roots satisfying Im( ) 0p < . The real 
coefficients A, B, C, D, E  are functions of velocity c and material constants, see Cerv & Plesek (2013). 

Using Ferrari’s method it is possible to prove that it is sufficient to solve the quartic equation (8) for 1k =  
only. All the roots must then be scaled by the true value of the wavenumber of interest, k . A quartic 
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equation has four roots. In this case, the equation coefficients are real, hence the complex roots always 
come in conjugate pairs. It can be seen that the fulfilment of the boundary conditions at infinity 2x → +∞  
can only be guaranteed by the roots with Im( ) 0p < .  Let us consider that 2 4 2 4, ,p p p p≠  are such roots 
of (8) taken for 1k = . It turns out, without going into the details, that in the interval of velocities, where 

2 4Im( ) and Im( )p p  are negative, the general solution to the equations of motion takes the form  
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Now it is possible to express the stress components σ12 and σ22. It holds that 
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                                                             (10) 

The stress free boundary conditions at 2 0x = , equation (6), yield another homogeneous system for 
displacement amplitudes 01 02,U U  as 
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               (11) 

This system will have a nontrivial solution if its determinant vanishes. This leads to a secular equation. 
The implicit secular equation may be written symbolically as (details may be seen in Cerv & Plesek 
(2013)) 

( , , , , ( , , , )) 0 .ij j ijF C c p C cϑ ρ ϑ ρ =                                                      (12) 

4. Results 

The determination of Rayleigh wave velocity by means of implicit secular equation (12) may be 
illustrated by the following example. Let us consider the thin composite SE84LV (Cerv et al., 2010). Let 
us also assume that the orientation of the principal material axes is given by 45ºϑ = . 

 

 
Fig. 2:  Roots 2 4,p p  of eq. (8) for 1k =  versus c . 
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Before evaluating the left-hand side of the equation (12) as a function of velocity c  one has to compute 
the four roots jp of the quartic equation (8) taken for 1k = . It can be seen that the fulfilment of boundary 
conditions at infinity 2x → +∞  is guaranteed only by the roots 2 4,p p  with negative imaginary parts, see 
Fig. 2.  A graph of the function F is shown in Fig. 3. In an interval of speeds, where simultaneously 
Im( ) 0jp < , the equation (12) has just one root 1967.224 m/sRc = . 

 

 
Fig. 3:  Left-hand side of eq. (12) versus velocity c. 

 

5. Conclusions 

It has been confirmed, in accord with Ting’s (2004), that the Rayleigh wave propagation exhibits no 
geometric dispersion. This means that the Rayleigh wave velocity is independent of frequency. In the case 
of orthotropic materials (thin composites) it has been found that Rayleigh wave velocity depends 
significantly, as with bulk waves, on the directions of the principal material axes. All numerical 
computations were performed in Matlab R2010b. 

Acknowledgement  

The work was supported by the projects GAP101/12/2315 (GA CR) and TH01010772 (TA CR) with 
institutional support RVO: 61388998. 

References  
Cerv, J. & Plesek, J. (2013) Implicit and explicit secular equations for Rayleigh waves in two-dimensional 

anisotropic media. Wave Motion, 50, pp. 1105-1117. 
Cerv, J., Kroupa, T. & Trnka J. (2010) Influence of principal material directions of thin orthotropic structures on 

Rayleigh-edge wave velocity. Composite Structures, 92, pp. 568-577. 
Ting T.C.T. (2004) Explicit secular equations for surface waves in an anisotropic elastic half-space from Rayleigh to 

today, in: R.W. Goldstein, G.A. Maugin (Eds.), Surface Waves in Anisotropic and Laminated Bodies and 
Defects Detection, Kluwer Academic Publishers, Dordrecht, pp. 95–116. 

 

136


