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Abstract: This work concerns the transient response of an infinite two-layered strip subjected to a transverse 

load of impact character. The material of each layer is assumed to be specially orthotropic, i.e. the material 

and geometric axes coincide. Moreover, the material is modelled as linear viscoelastic using the model of 

standard linear viscoelastic solid such that the damping behaviour of the strip for long wavelengths and long 

times can be addressed. The non-stationary wave phenomena in the strip are studied using analytical 

approach. The system of equations of motion for the case of 2D plane-stress problem is solved using the 

classical method of integral transform. Once the formulas for the Laplace transforms of fundamental 

mechanical quantities are derived, the numerical inverse Laplace transform is used to obtain the response in 

time domain for a strip with free-fixed boundaries. The results for a strip composed of two orthotropic layers 

of specific material properties are presented in this work. Finally, this solution is confronted with the results 

of numerical simulations reached by a professional FE code.  

Keywords:  Wave propagation, Layered strip, Orthotropic material, Viscoelastic material, Analytical 

solution. 

1. Introduction 

Propagation of stationary and transient stress waves through layered structures is the subject of intensive 

interest for many years. This interest is related to the application of layered materials as vibration isolators 

and impact absorbers. Most of existing works concerning the optimal design of layered structures is based 

on numerical approaches but several papers making the use of analytical methods exist, e.g. 

Luo et al. (2009) or Velo & Gazonas (2003). Analytical and semi-analytical approaches enable deeper 

insight into the problem and more efficient design process in such cases. 

This work deals with the transient wave problem of an infinite viscoelastic strip composed of two 

orthotropic layers. The analytical solution of the problem with free-fixed boundaries is derived by means 

of classical method of integral transforms. Fourier and Laplace transforms are applied in spatial and time 

domains, respectively. This paper follows our previous works Adámek & Valeš (2015) and Adámek et al. 

(2015) in which the solutions for a single-layer strip problem and for a two-layered strip with free-free 

boundaries are presented. 

2. Problem formulation  

The scheme of the problem solved is depicted in Fig. 1. We will assume an infinite strip composed of two 

layers of the same thickness d and of special orthotropic properties such that the material and geometric 

axes coincide. Each layer will be identified by the index n, the index n = 1 corresponds to the lower layer, 

while n = 2 denotes the upper layer.  Further, the material of both layers will be assumed to be linear 

viscoelastic and the model of standard orthotropic viscoelastic solid will be used for its representation 

(see Sobotka, 1984). 
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Fig. 1: The scheme of the problem solved. 

The boundary and initial conditions of the problem can be specified as follows: (i) the upper edge of 

the strip is loaded in vertical direction by pressure/tension described by a function even in horizontal 

coordinate; (ii) the lower edge of the strip is fixed, i.e. zero vertical and horizontal displacements are 

prescribed; (iii) zero initial conditions for displacement components and their time derivatives will be 

assumed. Given the above, the problem will be solved as a plane stress problem in the coordinate system 

x1-x2 which is advantageously chosen in such a way that both axes represent the axes of problem 

symmetry. It means that the axis x1 coincides with the layer interface (see Fig. 1). 

3. Governing equations and analytical solution  

In fact, the motion of waves in each layer is described by the same equations used in the paper 

Adámek et al. (2015). Then u1,n (x1, x2, t) and u2,n (x1, x2, t) for n = 1, 2 are the functions of displacement 

components which we are looking for. Applying the Laplace transform in time domain, taking into 

account the zero initial conditions and introducing the complex functions ū1,n = ū1,n (x1, x2, p) and 

ū2,n = ū2,n (x1, x2, p) as the Laplace transforms of u1,n and u2,n (p  C), the transformed equations of motion 

can be written as 
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where the constants 12,n and 21,n denote the Poisson ratios of orthotropic material corresponding to the 

nth layer. For simplicity, the appropriate Poisson ratios of viscous and elastic elements in the material 

model are assumed to be equal. The complex functions C11,n (p), C12,n (p) and C22,n (p) present in (1)-(2) 

reflect the elastic and viscous properties of the material of each layer and are expressed by standard 

material parameters analogously as in Adámek et al. (2015). 

Due to the symmetry of the problem with respect to the axis x2, it is clear that the solution of the 

coupled system (1)-(2) can be found in the form of the following Fourier integrals:    

     


dxpxAu n 



0

12,1 sin,,
1

 and     .cos,,
1

0

12,2 


dxpxBu n 


  (3) 

Introducing the expected solutions (3) into the system (1)-(2) and after some algebra, one obtains a 

system of two PDEs for the unknown Fourier spectra A(, x2, p) and B(, x2, p). The solution of such a 

system can be expressed in a general form 

          ,chshchsh,, 2,22,22,12,12 xSxRxQxPpxA nnnnnnnn   (4) 

            ,shchshch,, 2,22,2,22,12,1,12 xSxRLxQxPLpxB nnnnnnnnnn   (5) 
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in which sh and ch stand for the hyperbolic functions sinh and cosh, respectively. The symbols 1,n and 

2,n represent the roots of the characteristic biquadratic equation associated with the mentioned system of 

PDEs and they are dependent on the frequency  and on p. The other quantities L1,n and L2,n depend on 

1,n and 2,n and their definition can be deduced from the relations presented in Adámek et al. (2015). 

At this moment, the Fourier spectra (4)-(5) are expressed in terms of eight unknown functions 

Pn (, p), Qn (, p), Rn (, p) and Sn (, p) for n = 1, 2. These functions can be determined by using the 

boundary conditions of the problem. Based on the problem formulation made above, the boundary 

conditions can be formulated as follows: 

          ,,0,,0,,0,,,,,, 12,2211,2212,12112,22 txtxtdxtxtdx     

            ,,0,,0,,,0,,0,,,0,,0, 12,211,212,111,112,1211,12 txutxutxutxutxtx   (6) 

     .0,,,0,, 11,211,1  tdxutdxu   

Using the conditions (6) and the constitutive relations for appropriate stress components, a system of 

eight equations is obtained for Pn, Qn, Rn and Sn. The analytical or numerical solution of this system can 

be found. Due to some overflow problems during the numerical computations performed in double 

precision in Matlab environment, the exact solution in a closed form was derived using the symbolic 

system Maple in this work. Substituting this solution into (4)-(5) and subsequently into relations (3), the 

resulting formulas for the Laplace transforms of displacement components are obtained. On the basis of 

these results, the Laplace transforms of other mechanical quantities, such as velocity or stress 

components, can be derived. 

 In the last step of the solving procedure, the inverse Laplace transform back to time domain needs to 

be performed. Based on the complexity of the resulting formulas and on the experiences gained by 

authors in their previous works (e.g. Adámek & Valeš, 2012), numerical approach to the inversion was 

chosen. In particular, an algorithm based on the combination of FFT and Wynn’s epsilon accelerator was 

used. For details about this method see e.g. Cohen (2007).  

4. Results and discussion 

The evaluation of derived solution was made for a strip the material properties of which were estimated 

based on the parameters for composite lamina found in Soden et al. (1998). Concretely, following 

material parameters have been used: the material density  = 2250 kg m-3; the Young moduli, shear 

modulus and the Poisson ratio of the alone-standing elastic element in the material model, see Sobotka 

(1984), E0,1 = 35109
 Pa, E0,2 = 11.584109

 Pa, G0,12 = 4109
 Pa, 0,12 = 0.278; the Young modulus and the 

shear modulus of the second elastic element in the material model E1 = 18.48109
 Pa, G12 = 1.83109

 Pa 

and the coefficients of normal and shear viscosities 1 = 12 = 5104
 Pa s-1. These parameters have been 

used in such a way to model a material with fibers oriented horizontally in the bottom layer of the strip 

(n = 1) and vertically in the upper layer (n = 2). The height of each layer was chosen as d = 20 mm. 

Finally, the function representing the external load applied to the upper strip edge (see Fig. 1) was 

assumed to be non-zero only for x1  -h, h and had the form (x1,t) = -a cos(/2x1/h) H(t), where 

a = 1 MPa, h = 2 mm and H(t) denotes the Heaviside function. 

Fig. 2 shows a sample of results reached by the evaluation of the formulas derived (thick lines). The 

time histories of horizontal and vertical velocity components at two selected points (x1 = 6, 10 mm) lying 

at the interface of the layers (x2 = 0) are presented for t  0, 50 s. To validate the procedure of 

analytical solution derivation and its evaluation, these results were compared to those obtained by FE 

simulation (thin dashed lines in Fig. 2). The simulation was performed in the professional FE code 

MSC.Marc/Mentat using linear isoparametric 4-node elements of basic size 0.4  0.4 mm. The Newmark 

algorithm with time step 210-8
 s was used for the integration in time domain. It is obvious from this 

comparison that a good agreement between both types of results was achieved and that the finite element 

model needs to be improved to reduce the oscillations of the time courses of velocity components for 

short times. This can be expected since relatively coarse mesh has been used to capture the waves of high 

frequencies. Additionally, it is clear from Fig. 2 that the major part of transient phenomena subsides in 

short times which is related to the material and geometric properties of the strip.        
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Fig. 2: Comparison of analytical (thick lines) and numerical (thin dashed lines) results for x2 = 0 mm and 

for different values of x1: (a) the horizontal velocity du1/dt, (b) the vertical velocity du2/dt. 

5. Conclusions 

This work presents the analytical solution for transient wave problem of an infinite viscoelastic strip 

composed of two specially orthotropic layers. Results for specific transversal load and free-fixed 

boundaries are obtained. Given the relatively general description of the strip material properties, this 

solution can be used for studying wave phenomena in strongly heterogeneous two-dimensional strips 

made of elastic, viscoelastic, isotropic or orthotropic layers. The advantage of this solution consists in the 

fact that it can be used not only for studying plane wave propagation through a layered structure as in 

most of existing works but also waves generated by a local load of impact character can be investigated. 

This can be utilised by the process of finding the optimal design of layered materials used for impact 

absorbers.  
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