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Abstract: The article deals with the implementation and verification of a numerical solver for large 

heat transfer problems in the context of the finite element analysis. Large problems are defined as 

problems whose solution on contemporary computers is computationally difficult. The solver builds 

on the numerical methods for an efficient direct solution of large linear elastostatic problems, 

developed in earlier works. The solver is integrated within our in-house finite element code PMD. 

Verification is carried out on several large thermo-elasto-plastic problems from real-world 

engineering practice. 

Introduction 

Direct solution methods [1] are particularly important in the Finite Element Method (FEM) [2] 

since they enable the factorization (the most time demanding part of the solution) to be performed 

only once for a given problem and subsequently to solve it for any number of right-hand sides (load 

cases), which is especially useful in complex problems (thermo-elasto-plastic, dynamic, etc.). 

The presented approach to an efficient implementation of a sparse direct solver focuses on 

minimizing the required amount of both the storage space and the computational time required for 

the direct solution of a large problem. This is achieved particularly by using a modified minimum 

ordering algorithm to reduce the fill-in, therefore, reducing the number of numerical operations 

needed to compute the solution [3]. Both the factorization and the substitution algorithms are 

parallelized to fully exploit today's multi-core and multi-processor computers. The global 

coefficient matrix is assembled and stored in-core throughout the computation, using an efficient 

sparse matrix storage format. Although that leads to considerably high memory requirements, in 

practice, it does not present a significant problem for today's computers. The finite element Fortran 

code PMD [4] is used as the framework for the presented implementation of a sparse direct solver.  

Problem formulation 

The solution of a linear equation system can be written in the matrix form simply as 

Ax = b,                                                                                                                                           (1) 

 

where A is the coefficient matrix, x is the unknown solution vector and b is the righ-hand side 

vector. In solid continuum mechanics, A may refer to the stiffness or conductivity matrix, x to the 

displacement or temperature vector, and b to the external loading forces or thermal loading. 

Moreover, especially in the context of FEM, a single problem almost always needs to be solved 

for many right-hand sides (load cases), thus, vectors x and b in Eq. 1 actually become matrices. 

Furthermore, the global coefficient matrix A obtained from the finite element discretization is 

singular, therefore, equation system Eq. 1 cannot be solved unless boundary conditions, which are a 

part of the finite element problem formulation, are taken into account. 

For a complete solution of a combined thermo-elasto-plastic problem, iterative non-linear 

numerical solution methods are needed [2]. From the computational point of view, they involve 

matrix-vector and vector-vector operations that are however not as computationally intensive as the 

underlying solution of linear equation system, which plays major part in each iteration. 
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Results 

In Table 1, selected largest computed problems are listed along with their order n (number of 

unknowns), block-order N (number of diagonal blocks), frontwidth nfw, number of nonzero matrix 

blocks Nnz and number of nonzero matrix elements nnz. 

Computational times are presented in Table 2, where the sparse direct solver clearly 

demonstrates its efficiency over the existing frontal solver. 

 

Table 1: Test problems‘ parameters. 

Problem no. n N nfw Nnz nnz 

1 1,129,747 257,861 7,582  13,548,221   216,454,160 

2 1,739,211 579,737 4,719 124,138,819 1,115,504,693 

3 1,909,577 439,287 5,214  29,584,204   484,886,739 

4 1,973,550 657,85 12,873 218,994,791 1,968,939,519 

5 2,858,631 952,877 18,828 667,395,241 6,003,699,588 

6 3,022,848 695,05 11,342  65,174,392 1,063,250,512 

 

Table 2: Solution time for test problems. 

Problem no. Frontal solver [hrs] Sparse direct solver [min] 

1 4.49 17 

2 3.56 49 

3 4.12 47 

4 22.38 115 

5 > 99.99 253 

6 17.17 120 

Conclusion 

A distinct approach to the direct solution of large thermo-elasto-plastic problems was presented. 

Efficient sparse matrix storage and necessary algorithms were implemented into a sparse direct 

solver, which was thoroughly tested on real-world engineering problems from solid continuum 

mechanics. The results obtained from the numerical tests confirmed the solver's efficiency and 

scalability. High memory requirements of the solver were anticipated and will present gradually less 

a problem with the ever-increasing capacity of computers. 

The potential of the implemented sparse direct solver is fully utilized within the solution 

procedures for nonlinear heat transfer and inelastic finite element problems. 

Acknowledgement: The work was supported by TA CR project No. TH01010772 within the 

institutional support RVO 61388998. 

References 

[1] A. George, J.W.H. Liu, Computer solution of large sparse positive definite systems, Prentice-

Hall, Englewood Cliffs, NJ, 1981. 

[2] K.J. Bathe, Finite Element Procedures, Prentice-Hall, Upper Saddle River, NJ, 1996. 

[3] P. Pa!ík, An out-of core sparse direct solver for large finite element problems, CTU reports 

Vol. 1 No. 15, Czech Technical University Press, Prague, 2011. 

[4]  PMD version 11.0, information on http://www.pmd-fem.com/ 

 

Pařík Petr 221


