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Abstract: We present a decomposition of equations of motion in solids into a curl-zero (longitudinal)
component and a divergence-zero (shear) component. Partitioned equations of motion are needed for
accurate finite element numerical modelling of wave propagation problems. In that case, each equation
of motion is integrated separately with corresponding critical time step size in explicit time integration.
By this approach, dispersion behaviour of the finite element method and mainly spurious oscillations
in numerical results can be suppressed.

Introduction

A novel explicit time integration method in finite element computations of wave propagation problems
in solids has been presented in [1, 2, 3]. This technology is based on separate integration of longitudi-
nal and shear waves with each critical time step size respecting different wave speeds. The mentioned
time integration scheme is the three-time step scheme in the predictor-corrector form and it pro-
duces excellent results without spurious oscillations near theoretical wavefronts. In this paper, we give
a theoretical framework for a wave orientated decomposition of the equations of motion in solids.

Decomposition of displacement fields and equations of motion

From the vector analysis [4], we know that a vector field p(x) with described boundary conditions,
which is defined on a bounded Lipschitz domain Ω ⊂ R

3, x ∈ Ω, and is twice continuously dif-
ferentiable, can be decomposed into two parts: an irrotational (curl-free) component which can be
expressed by the gradient of a scalar function and a rotational (divergence-free) component which
can be expressed by the curl of a vector function. This decomposition of a vector field is called the
Helmholtz decomposition [4, 5].

In the Helmholtz decomposition, the vector field p is given by the sum of the gradient of a scalar
potential φ and the curl of a vector potential ψ as

p = gradφ+ curlψ with the condition divψ = 0 (1)

The proof of the Helmholtz decomposition of a vector field on arbitrary domains and with prescribed
non-homogeneous boundary conditions can be found in [6]. Here, formulæ for the scalar potential φ
and the vector potential ψ have been also derived.

For the following text, we denote expressions p1 = gradφ and p2 = curlψ. The main
properties of the Helmholtz decomposition of the vector field p decomposed by Eq. 1 are following

div p = div p1, curl p = curl p2, curl p1 = 0, div p2 = 0 (2)
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These expressions serve for derivation of a decomposition of equations of motion in solids.
The equations of motion in solids (the law of balance of linear momentum) [5] defined on a domain

Ω ⊂ R
3 take the vector form as

divσ + b = ρü (3)

where we assume that Dirichlet and Neumann boundary conditions of the problem are defined. Here,
σ is the Cauchy stress tensor, b is the volume intensity vector, ü(x, t) is the acceleration vector field,
x ∈ Ω is the position vector, t is the time and ρ is the mass density. Each vector field, taking place at the
equations of motion Eq. 3 (i.e. divσ, b and ü), can be decomposed by the Helmholtz decomposition
into two parts: irrotational (marked with the subscript L) and rotational (marked with the subscript S).
We suppose that boundary conditions for ü and divσ should be also respected. Then, we have got

(divσ)L + (divσ)S + bL + bS = ρüL + ρüS (4)

If the operators div and the operator curl are applied on Eq. 4 and with respect to Eq. 2, it yields

div
[

(divσ)L + bL − ρüL

]

= 0, curl
[

(divσ)S + bS − ρüS

]

= 0 (5)

The two last equations are vanished only if it is valid

(divσ)L + bL = ρüL, (divσ)S + bS = ρüS (6)

These two last equations are the sought decomposed system of the equations of motion in solids.
In the case of linear elastodynamic theory of an isotropic homogeneous body and neglecting of

body forces, the equation Eq. 6left describes propagation of longitudinal waves and the equation
Eq. 6right controls propagation of shear waves [5].

Summary

We presented a technique for decomposition of equations of motion in solids into longitudinal and
shear components. These partitioned equations of motion serve for accurate numerical modelling of
wave propagation problems. In [2, 3], a specific explicit time integration method using the partitioned
equations of motion in finite element computation has been published. Further, the discrete longitudi-
nal and shear operators as counterparts of the operators div and curl, which are able to guarantee the
decomposition of an arbitrary discretized vector field by the linear finite element method as the sum
of the curl-zero (longitudinal) and divergence-zero (shear) components, have been found in [2, 3].
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