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1. Introduction 

Design requirements of stiffened and unstiffened aluminium plates which are subject to in-plane forces 

are given in Eurocode EN 1999-1-1. Interaction between bending moment and shear force are treated in 

EN 1999-1-1 in the following clauses: 

a) the clause 6.2.8 related to resistance of class 1, 2 and 3 cross-section (formulae (6.38) and (6.39)). 
Where a shear force is present allowance should be made for its effect on the moment resistance. If the 

shear force EdV  is less than half the shear resistance RdV  its effect on the moment resistance may be 

neglected except where shear buckling reduces the section resistance, see 6.7.6. Otherwise the reduced 

moment resistance should be taken as the design resistance of the cross-section, calculated using a 

reduced strength.  
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where for non-slender sections with oww f/MPa25039t/h   the shear resistance is (formula (6.29)) 
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The shear area vA  may be taken as (formula (6.30)): 
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hazb  is the total depth of HAZ (Heat Affected Zone) material occurring between the clear depth 

            of the web between flanges. For sections without welds, hazo,  = 1. If the HAZ extends  

            the entire depth of the web panel  dhb whaz . 

d         the diameter of holes along the shear plane 

n          the number of webs. 
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In the case of an equal-flanged I-section classified as class 1 or 2 in bending, the resulting value of the 

reduced moment resistance Rdv,M  is (formula (6.39)): 
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where h  is the total depth of the section and wh  is the web depth between inside flanges. 

In the case of an equal-flanged I-section classified as class 3 in bending, the resulting value of Rdv,M  is 

given by expression (4) but with the denominator 4 in the second term replaced by 6. 

For slender webs and stiffened webs, for sections classified as class 4 in bending or affected by HAZ 

softening, see 6.7.6. 

b) the clause 6.2.10 related to interaction between bending moment, shear and axial force for class 

1, 2 and 3 cross-sections. Influence of axial force is not taken into account in this paper. 

Where shear and axial force are present, allowance should be made for the effect of both shear force and 

axial force on the resistance of the moment. Provided that the design value of the shear force EdV  does 

not exceed 50% of the shear resistance RdV  no reduction of the resistances defined for bending and axial 

force in 6.2.9 need be made, except where shear buckling reduces the section resistance, see 6.7.6. Where 

EdV  exceeds 50% of RdV  the design resistance of the cross-section to combinations of moment and 

axial force should be reduced using a reduced yield strength 
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NOTE: Instead of applying reduced yield strength, the calculation may also be performed applying an 

effective plate thickness. 

c) the clause 6.5.6 related to resistance of unstiffened plates under combined in-plane loading 

(formula (6.90b) in Amendment A1 to EN 1999-1-1). 

If the combined action includes the effect of a coincident shear force, VEd , then VEd  may be ignored 

if it does not exceed 0,5 VRd (see 6.5.8). If VEd  > 0,5VRd the following condition should be satisfied: 
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d) the clause 6.7.6 related to plate girders. Interaction between bending moment, shear force and 

axial force for class 4 cross-sections and slender webs in shear (formula (6.147) ). In this paper NEd = 

0 kN is supposed. 

Provided that the flanges can resist the whole of the design value of the bending moment and axial force 

in the member, the design shear resistance of the web need not be reduced to allow for the moment and 

axial force in the member, except as given in 6.7.4.2(10). 

If Rdf,Ed MM   the following two expressions should be satisfied: 
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                                                         M  M Rdc,Ed                                                                     (9) 

where: M Rdc,  is the design bending moment resistance according to 6.7.2 (4). 

            M Rdf,     the design bending moment resistance of the flanges only, see 6.7.5(9). 

            M Rdpl,    the plastic design bending moment resistance. 
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2. Interaction Formula Development for Cross-Section Resistance to Combination of MEd and VEd 

Plate girders with slender webs are common structural element used in metal (steel or aluminium) 

structures. The bending and shear cross-section resistance depends on the following parameters: structural 

material, flange and web geometry, arrangement and geometry of stiffeners, residual stresses, initial 

geometric imperfections, etc. Bending and shear resistance of a girder depends also on bending moment-

shear force ratio. The parametric study and influence of MEd-VEd ratio see in (Baláž, Koleková, 2014b). 

Where bending load is higher than bending resistance of flanges (MEd > Mf,Rd), the reduction of shear 

resistance has to be considered. 

2.1. Plastic resistance for class 2 and 1 cross-sections  

The lower bound theorem of plastic theory can be used for deriving a theoretical interaction formula. Two 

possible states of stress are shown in Fig. 1, both compatible with von Mises yield criterion. The stress 

distributions are valid for class 1 or 2 cross sections. 

                     

Fig. 1:  I-section of class 1 or 2 subject to combined bending and shear and two possible stress 

distributions compatible with the von Mises yield criterion (Johansson et al., 2007). 

 

With the simplification that the flange thickness is small compared to the beam depth the left hand stress 

distribution results in a bending moment: 
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After rearrangement and introduction of the notation Mf.Rd = fyhAf for the bending moment, that the 

flanges can carry alone, and h
2
twfy / 4 = Mw,Rd = Mpl,Rd – Mf,Rd  the equation (10) becomes: 
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If Rd,fM<EdM , a statically admissible direct stress distribution σ in the flanges only can carry the 

bending moment and the web can be fully mobilized for resisting shear, and there is no interaction. The 

formula (11) should be understood such that it gives a set of MEd and VEd representing the limit of the 

resistance of the cross section. For design purpose the equal sign “=” is changed to “≤”. The stress 

distribution to the right in Fig. 1 was used by Horne (1951) in a study of the influence of shear on the 

bending resistance. It gives the following interaction formula: 

          1

2

Rd,plV

EdV
11

Rd,plM

Rd.fM
1

Rd,plM

EdM














































 ,    if    Rd,fM>EdM                         (12) 

The equation (12) gives always higher values than (11), which means that (12) is the best estimate of the 

plastic resistance in accordance with the static theorem of the theory of plasticity. 

The interaction formula (6.30) in clause 6.2.8(5) of EN 1993-1-1 MEd ≤ My,V,Rd is similar to (11) 

but starts the reduction of bending resistance when VEd > 0.5Vpl,Rd.  
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where Mc,Rd = Mpl,Rd for class 1 and 2,  Mc,Rd = Mel,Rd for class 3 cross-sections. 

Formula (13) can be rewritten as: 
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this interaction formula is more favourable in the part of the range than the theoretically determined 

formulae. The justification for this is empirical. There are test results available on rolled sections showing 

no interaction at all. This is even true if the increased plastic shear resistance η fy Aw is used, which can 

be resisted at the same time as the full plastic bending moment. The reason for this is mainly strain 

hardening of the material and it has been documented for steel grades up to S355. In this case the strain 

hardening can be utilised without excessive deformations. The reason is that the presence of high shear 

leads to a steep moment gradient, which in turn means that the plastic deformations are localised to a 

small part of the beam. Formulae (13, 15) can be seen as a cautious step in direction to utilise this fact. 

The cautiousness can be justified by lack of evidence for higher steel grades and because of the relatively 

lower strain hardening for higher grades it can be expected that such steel would show a less favourable 

behaviour. 

2.2. Local buckling resistance for class 4 and slender webs in shear 

When it comes to slender webs for which buckling influences the resistance there are no useful theories 

for describing the interaction. The first bending-shear (MEd-VEd) interaction formula for plate girders was 

proposed in (Basler, 1961), who developed an empirical model based on observations from tests. The 

model is similar to the lower bound theorem of plastic theory but it is here applied to a problem where 

instability governs, which is outside the scope of the lower bound theorem. The model is shown in Fig. 2. 

and it can be seen that the assumed state of stress is very similar to the left one in Fig. 1. The only 

difference is that the strength in shear is not the yield strength but the reduced value χwfy/ 3 . Basler used 

his own model for the shear resistance, which does not coincide with the one in EN 1993-1-5. Based on 

shear tests many researchers have proposed their own mechanical models to assess the panel’s post-

critical capacity with the formation of an appropriate diagonal tension field and in the position of the 

plastic frame mechanism (e.g. Höglund, 1971). The rotated stress field model in (Höglund, 1971; 1997) 

has proved to be very general and accurate. For the MEd-VEd interaction Höglund adopted the Basler 

model and added the contribution of flanges to shear resistance when available.  

                         

Fig. 2:  Interaction between bending moment and shear according to Basler with parameters                  

MEd / Mf,Rd, Mc,Rd / Mf,Rd and Mpl,Rd / Mf,Rd on horizontal axis (Johansson et al., 2007). 

As in the case of the plastic resistance, there is no interaction if MEd ≤ Mf,Rd and for larger values the 

interaction curve is a parabola. In this case the cross section is in class 3 or 4 and the cross-section 

bending resistance Mc,Rd ≤ Mpl.Rd. This is represented by a cut-off in Fig. 2 with a vertical line at  
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Mc,Rd / Mf,Rd. The interaction formula used in EN 1993-1-5 is a modification of Basler’s model as the 

reduction starts at VEd / Vbw,Rd = 0,5:  
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The difference compared with (15) is that Vbw,Rd is the resistance to shear buckling of the web according 

to chapter 5 in EN 1993-1-5. Equation (16) goes continuously over in (15) when the web slenderness is 

decreasing. Mpl,Rd is used also for class 4 sections. It means that the formula has to be supplemented with 

a condition that:  

                                                                    MEd ≤ Mc,Rd = Meff,Rd                                                             (17)                    

where Meff,Rd is the resistance calculated with effective cross section. Formula (16) is evaluated in (Baláž, 

Koleková, 2014b) for different geometries of girders. The girders are simply supported and loaded in 

three point bending and fitted with vertical stiffeners at supports and under the load. The webs are mainly 

of class 4. The curves above VEd / Vbw,Rd = 1 are examples of the contribution from flanges, which may be 

added if MEd ≤ Mf,Rd. The formula (16) was verified by the tests (Veljkovic, Johansson, 2001). Its 

applicability for higher strength steels is discussed in (Johansson et al., 2007). 

2.3. EN 1993 and EN 1999 procedures 

2.3.1. EN 1993 

The design rules for interaction between shear force and bending moment in Eurocode 3 are found in EN 

1993-1-1 for class 1 and 2 sections and in EN 1993-1-5 for class 3 (according to Johansson et al., 2007) 

and class 4 cross-sections. The rules in EN 1993-1-1 given in 6.2.8 are based on the plastic shear 

resistance and if shear buckling reduces the resistance, they refer to EN 1993-1-5. The slenderness limit 

for which shear buckling starts to reduce the resistance in an unstiffened plate girder is  

hw / tw = 72 yf/MPa235 /η and that limit is normally somewhere between the limits for class 2 and 3. 

The value η  = 1.2 is recommended for steel grades up to and including S460. It may be taken 

conservatively equal 1.0. For higher steel grades η = 1.0 is recommended. 72 / 1.2 = 60. The rules are 

stated differently because different models for the interaction are used. 

The interaction formula is used in EN 1993-1-5:2006 and BSI 5400-3:2000. In EN 1993-1-5 the 

interaction formula is applied to unstiffened and longitudinally stiffened girders and needs to be checked 

at a distance 0,5 hw from the support with a vertical stiffener, while in BSI 5400- 3:2000 this interaction is 

applied only for longitudinally unstiffened girders. In EN 1993-1-5 another interaction formula based on 

reduced stress method is proposed too. 

EN 1993-1-5 gives two independent interaction rules. The first rule (chapter 7 in EN 1993-1-5) is based 

on the calculation of characteristics of effective plate girder cross-section through effective widths and 

thickness of the web-plate. The second rule (reduced stress method in the chapter 10 of EN 1993-1-5) is 

based on determination of stress limits in unstiffened or stiffened plates. To consider the influence of 

moment gradient, this check is performed at a distance 0,5 hw from the support with vertical stiffeners. 

Except the buckling verification, gross sectional resistance needs to be checked at the end of the panel 

(clause 4.6 (3) in EN 1993-1-5:2006). Effective width method used in EN 1993-1-5 is analyzed in (Baláž, 

Koleková, 2014b).   

In the reduced stress method the interaction is given for stress states, calculated on gross cross-section 

characteristics, and is defined with the following equation: 
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where Ed,xσ  is maximum design value of normal pressure stress, Edτ  is design shear stress, xρ  

and wχ  are the corresponding reduction factors. This interaction could be much more severe 
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than the first one because no stress distribution is accounted for. The reduced stress method is not 

analyzed in this paper. 

2.3.2. EN 1999 

The formulae of EN 1999-1-1 are described in the introduction. The formulae in the clause 6.2.8 of EN 

1999-1-1 and in the clause 6.2.8 of EN 1993-1-1 are based on the identical principles and they have the 

same form. The same formulae are also in the clause 6.2.10 of EN 1999-1-1 and in the clause 6.2.10 of 

EN 1993-1-1. 

In the clause 6.5.6 of EN 1999-1-1 there is formula (6.90b) valid for unstiffened plates under combined 

in-plane loading (see Amendment A1). This formula is incorrect. EN 1993 does not contain such formula. 

For class 4 cross-sections and for slender girder webs in shear there is formula (7.1) in the chapter 7 of 

EN 1993-1-5 and formula (6.147) in the clause 6.7.6.1 of EN 1999-1-1. The formula (6.147) is modified  

Basler formula. Thanks to print error it is written in (Höglund, Tindall, 2012) in incorrect form. The 

formulae (7.1) and (6.147) differ. EN 1999-1-1 and EN 1993-1-1 should use the same formula to 

harmonize them.  Fig.3 illustrates the fact that formula (6.90b) is incorrect and shows difference between 

formulae (7.1) and (6.147). It is proposed to use in EN 1999-1-1 the formula (7.1) of EN 1993-1-5 instead 

of formula (6.147). 

The reduced stress method is not used in EN 1999. 

3. Comparison of Various Procedures and Parametrical Study  

The graphical interpretations of EN 1999-1-1 interaction formulae are shown in Fig. 3. Relative 

resistances valid for the I-section calculated in the following numerical example are indicated in the 

diagram by symbols and numerical values. 

Formula (7) for NEd = 0, and formula (8) may be rewritten in the following forms 
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3.1. Numerical example 

Graph in the Fig. 1 is valid for:  

material: aluminium alloy EN AW-7020 T651, buckling class A:  

1,1,MPa350f,MPa280f,3,0,GPa70E 1Muo  , 

extruded I-section (class 4): 

mm10t,mm600h:)4class(web,mm25t,mm120b:)1class(flange,mm650h wwf  , 

radius of fillet: mm5r  . 

Such high profile would be welded. For the sake of simplification we suppose that aluminium I-section is 

extruded profile. Influence of welds is not investigated in this paper. This enable us to compare pocedures 

used in Eurocode EN 1993-1-5 for steel and in EN 1999-1-1 for aluminium structures. 

Ratio of bending moment resistances of the flanges and the gross I-section Mf,Rd / Mpl,Rd = 0,676. 

For simply supported girder loaded in the midspan by the transverse force FEd, with a transverse stiffener 

under FEd, we obtain for girder geometry L = 5hw the following values of the resistances FRd: 

a) according to EN 1993-1-5, formula (7.1) (formula (7) in Baláž, Koleková, 2014a, b): FRd,EN  = 1058 kN,  

                                                 MEd,EN / Mpl, Rd   = 0,899,  VEd,EN / Vbw,Rd,EN   = 0,779,  

                                                 Meff,Rd,EN / Mpl, Rd = 0,783,  

b) according to EN 1999-1-1, formula (6.147), here the formula (10b): FRd,EN = 997,5 kN,  
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                                                MEd,EN / Mpl, Rd = 0,847,     VEd,EN / Vbw,Rd,EN = 0,735, 

                                                Meff,Rd,EN / Mpl, Rd = 0,783, 

c) according to EN 1999-1-1, formula (6.90b), here the formula (10a): FRd,EN = 858 kN,  

                                                MEd,EN / Mpl, Rd = 0,729,     VEd,EN / Vbw,Rd,EN = 0,632,  

d) according to EN 1999-1-1, from the formula (9): FRd,EN = 2 Meff,Rd,EN/(0,5L-0,5d) = 922,3 kN.  

e) according to EN 1999-1-1, from the formula: FRd,EN = 2 Vbw,Rd,EN = 1357 kN. 

Comparison of the final resistances FRd calculated according to: 

EN 1993-1-5, formula (7.1):       min(1058 kN; 922,3 kN; 1357 kN) = 922,3 kN,  

EN 1999-1-1, formula (6.147):   min(997,5 kN; 922,3 kN; 1357 kN) = 922,3 kN,  

EN 1999-1-1, formula (6.147):   min(858kN; 922, kN; 1357 kN) = 858 kN. 

 

              

Fig. 3: Resistances calculated according to EN 1999-1-1 for aluminium class 4 cross-section under         

combination of bending moment MEd and shear force VEd. Values of resistances FRd for extruded  I-profile 

(125 mm x 25 mm + 600 mm x 10 mm + 125 mm x 25 mm, EN AW-7020 T651) are indicated by 

coordinates of symbols ○, ● and ■. Influence of MEd and VEd is characterised by the relationships  

MEd = FEd L / 4, VEd = FEd / 2, L = 5 hw, MEd / VEd = 2.5hw = 3.75 m. 

3.2. Part of large parametrical study 

The results in Fig. 3 relate to class 4 cross-section. Two more numerical examples were calculated for the 

same input values as in Fig. 3, only height of I-profiled was changed in 500 mm (to have class 3 cross-

section) and in 400 mm (to have class 2 cross-section). The results are given in Fig. 4 and Fig. 5, 

respectively. 
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Fig. 4: The same input values as in Fig. 2, except the height profile h = 500 mm. 

 

             

Fig. 5: Fig. 4 The same input values as in Fig. 2, except the height profile h = 400 mm. 
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Tab. 1: Comparison of formulae valid in interval 1
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




















 , 

Rd,effM=Rd,cM  

4 EN 1999-1-1 

6.7.6 

(6.147) Class 4 and girder web slender in shear 

1 ≤
Rdpl,M

Rdf,M
1

Rdw,V

EdV

Rdpl,M2

Rdf,MEdM

















, 

Rd,effM=Rd,cM  

5 EN 1999-1-1 

6.5.6 

(6.90b) 

1 ≤

2

1
RdV

EdV2
 

Rdc,M

EdM
+ 

Rdc,N

EdN








  

 

From the Tab. 1 and from the Fig. 3, 4, and 5 it is clear: 

a) the formula No. 5 in Table 1 is incorrect and it should be removed from EN 1999-1-1. See the big 

    jump in MEd = Mf,Rd,. 

b) the formulae No. 1, 2, 3, 4 in the Table 1 could be harmonized, 

c) the formula No. 1 valid for class 3 cross-section will become formula No. 2 valid for class 2 cross- 

    section if Mc,Rd = Mpl,Rd, 

d) the form of formula No. 2 valid for class 2 cross-section is identical with the form of formula No. 3 

    valid for class 4 cross-section. 

4. Conclusion 

An empirical model based on  observations from tests was first developed by Basler.  His formula was 

later modified by Höglund and others. The Eurocode formulae are based on these results. 

Comparison of the resistances in Fig. 1 calculated according to EN 1993-1-5, formula (7.1), EN 1999-1-1, 

formula (6.147) and EN 1999-1-1, formula (6.90b) shows that: 
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- formula (6.90b) should be deleted from EN 1999-1-1. Use of the formula in its partial form (for 

NEd = 0 kN) leads to unrealistic small cross-section resistances. Use of the formula in its full form 

(for NEd ≠ 0 kN) leads to incorrect results. 

- formula (6.147) from EN 1999-1-1 gives more conservative results than formula (7.1) from EN 

1993-1-5. The formulae of these two Eurocodes should be harmonised. 
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