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Abstract: The task of the von Mises planar truss is to examine the effect of load located on top joint oriented 

in vertical direction. The mathematical concept of large displacement elastic analysis of the von Mises truss 

specified for computers is described. The model consists of finite nodes, tensile stiffness, and rotation 

stiffness. The formulas for the evaluation of displacements of nodes and rotations of segments were derived 

using geometric and physical conditions. Formulae for the determination of potential energy of the system 

are presented. Using search for the minimum potential energy, we can find the deformation of the model. The 

solution is searched step by step, using the Newton-Raphson iteration. The presented computational 

algorithm allows to model the von Mises truss using a finite amount of segments. Such solution is suitable for 

the load-deflection curve computation of a limit load model. 

Keywords:  Von Mises truss, Nonlinear solution, Potential energy, Newton-Raphson method, Discrete 

model, Computational algorithm. 

1. Introduction 

The study of the two-bar truss, also known as the von Mises planar truss, is important to define the main 

stability characteristics of framed structures as well as flat arches, and of many other phenomena 

associated with bifurcation buckling. The von Mises planar truss is an example of a classical elastic 

system having numerous references in the literature (von Mises, 1923; von Mises & Ratzersdorfer, 1925; 

Kwasniewski, 2009).  

The objective of the solution is an analysis of the load-deflection curve of top joint. The load-deflection 

curve of the top joint has been attempted with use of the computer programme which calculates the 

change of the potential energy for individual nodes of the model. 

The deflection for the specific node, which was used in past, was attempted to calculated by a static 

method. Using this method for calculation of any node could be more difficult in terms of time and 

accuracy of the result. Contrastingly, using the potential energy is important to analyze the deflection of 

any nodes. 

The solution is useful for plotting the load-deflection curves of asymmetrical trusses with random 

imperfection. Let us note that imperfections are generally random variables,  realizations of which can be 

simulated by methods of type Monte Carlo; it can be seen in the following publications (Karmazínová et 

al., 2009; Gottvald & Kala, 2012; Kala, 2012; Kala, 2013). In the design of steel structure, it is important 

to count with the influence of imperfection, see, e.g., (Kala, 2008; Gottvald, 2010; Kala & Kala, 2010; 

Kala, 2012). Their effect has the significance for both static and economic designs of the structure, see, 

e.g., (Gottvald, 2010; Kala et al., 2012). The mathematical concept described in this article is suitable for 

the analysis of load-deflection curves of asymmetrical trusses with random imperfection. 
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2. Geometry of the Model 

Two slender struts connected by means of top joints form the model of von Mises truss, see Fig. 1. The 

geometry is characterized by the span L, angle  and Young’s modulus of elasticity E. If the span L and 

angle  are known, it can be evaluated the height of the von Mises truss H, see (1): 

 tgLH 
2

1
 (1) 

 

Fig. 1: Model of von Mises planar truss. 

In the first step, the model is divided into a finite number of segments. The model is loaded with force F 

in the top joint, see Figure 1. Initial coordinates of individual mass points of the model are evaluated, see 

(2), (3). 

 cos ii Lx  (2) 

 tgxy ii   (3) 

where Li is the segment length (distance between the initial node and the i
th
 node). It is obtained according 

to the following equation: 

 
m

Li
Li

´2 
  (4) 

where i is the index of the node, L´ is the length of one strut, m is the finite number of segments into 

which the structure was divided (m is an even number for symmetrical models). If coordinate yi is 

evaluated for the top joint, then (3) is adjusted to the following equation stemming from (1) and (2): 

 )( HtgxHy ii    (5) 

3. Solution by Potential Energy 

The energy principle is applied to solve internal forces, taking into account geometrical non-linearity. The 

movement of individual points of the von Mises truss can be observed by means of the computer 

programme. At the beginning, coordinates of nodes are fixed as the initial state. Subsequently, a 

dislocation will be attributed to a chosen node, and potential energy of the system will be calculated for 

this state. 

   
22

2

1
iiup KuKE   (6) 

where Ku is axial stiffness of the model, ui is the matrix of the distance between actual and previous 

positions of the i-th node, Kφ is bending stiffness of the model, and φi is the rotation of individual parts 
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which can be calculated as the difference between two angles formed by two segments. Calculation of 

axial stiffness will be obtained according to the following relation. 

 
´L

AE
Ku


  (7) 

where E is Young’s modulus, A is cross-section area, and L´ is hypotenuse length formed by bending 

units. The calculation of bending stiffness will be determined according to the following formula: 

 
´L
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K


  (8) 

where E is Young’ modulus, I is the second moment of the area, L´ is the length of hypotenuse formed by 

bending units. 

4. Newton Iteration Method 

To search for the extreme values of the potential energy method, the Newton-Raphson iteration, for 

example, can be used as it was carried out in the journal; it is described in (Frantík, 2007). In the case of 

position change of initial coordinates, the equation will have the following forms: 
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where J(xi
n
 ), J(yi

n
 ) are matrices of partial derivations of vector functions f in points with coordinates xi, yi 

in steps n. The vector functions f(xi
n
 ), f(yi

n
 ) are numerical central derivations of the vectors of potential 

energies, see (11) , (12): 
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where s is parameter of solutions (1x10^-08), and Epx
U
, Epx

L
, Epy

U
, Epy

L
 are potential energies with changes 

by parameter s. As the matrices J(xi
n
 ), J(yi

n
 ) are regular, the vector of unknown dislocations of 

coordinates will have just only one solution for the step v(xi
n
 ), v(yi

n
 ) searched for. This solution can be 

obtained from relations (9, 10), for example by means of the Gaussian elimination method, and 

subsequently, the positions of new nodes can be determined. 
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After having calculated (13, 14), the new coordinates will change by the parameter s, and the calculation 

of potential energy will be repeated. Checking the coordinates of individual points continues from the 

step 1 to n. In the course of calculation, the programme saves the values of coordinates of nodes.  

5. Conclusions 

The mathematical solution determined to create a computer programme based on finite numbers of 

segments is developed. The objective of the solution is an analysis of the load-deflection curve of top 

point. The solution is applicable to drawing the load-deflection curves of asymmetrical trusses with 

random imperfections. The axes of struts are, in general, curves which can be modelled by means of 

random quantities or random fields; it was applied (Kala, 2007). Geometrical and material characteristics, 
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as well, should correspond with the real data obtained from experimental measurements as accurately as 

possible, as described in (Melcher et al., 2004; Strauss et al., 2006; Kala et al., 2009). Applying the 

Newton method of tangents, the computer programme can check the coordinates of any node. It 

represents a possibility of more detailed analysis enabling to take into consideration all important 

imperfections. The statistical analysis can apply advanced methods of reliability analyses based on the 

methods of type Monte Carlo, see, e.g., (Kala, 2010a; Kala, 2010b). 
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