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Abstract: In the paper the class of relatively simple constitutive models of hyperelastic non-homogeneous 

composite materials with isotropic matrix reinforced with continuous fiber families is proposed. The model 

was formulated on the basis of strain energy additivity assumption. Proposed class of constitutive models 

reduce in approximation to the classical for linear theory models of fibrous composites, where full bounding 

between matrix and fibers is assumed. The strain energy potential for proposed model is a poly-convex 

function, what ensure existence of solution of boundary value problems for hyperelasticity and good 

numerical conditioning. Constitutive relationships expressed in objective incremental form are implemented 

in FORTRAN in user procedure UMAT of FEM system ABAQUS. The numerical tests were carried out to 

check correctness of the implementation, and two types of boundary value problems of tubes 

tension/compression tests are solved. 
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1. Introduction 

Composite materials in the form of isotropic matrices reinforced with fibers are commonly used in 

technical applications because of their desirable mechanical properties. The main goal of fiber insertion 

into matrix is to obtain needed mechanical properties understood as desired stiffness and assumed 

strength. The fundamental condition to obtain planed mechanical properties of composite is a good 

coupling between components (in this case between fibers and matrix). And this assumption was a 

starting point several years ago for proposition of fiber composite theoretical model based on mixture 

theory, cf. Spencer (1972), Boehler (1987). Such models implemented in small deformation theory are 

very usefull in case of many engineering problems from geotechnical applications for geosynthetic grid 

modeling to aircraft skins modeling. The fundamental motivation for development of anisotropic 

hyperelastic constitutive models was and still is biomechanics and mechanics of woven materials. In case 

of biomechanics and soft tissue constitutive modeling, the application of large deformation theory is well-

founded, cf. Bonet & Wood (1997). Unfortunately, in other mechanic disciplines the need for large 

deformation theory application is not always well understood. For example, geosynthetic grid becomes 

reinforcement for soil when soil deformation is large, when differences between configurations are 

significant. Then it follows that application of theory with nonlinear geometry is needed. On the other 

hand it is inadmissible in continuum mechanics to use so called “physically linear” constitutive models, 

because they are not fulfilling all basic requirements resulting from objectivity and energy conservation 

rules. The simplest theory in which all requirements are fulfilled is theory of hyperelastic materials, and a 

class of constitutive models for fiber reinforced materials considered herein is situated in group of 

anisotropic hyperelastic constitutive models (especially orthotropic and transversally isotropic 

hyperelastic materials, cf. Jemioło & Telega (2001)). The main goal of this paper is to extend previously 

presented constitutive model (Gajewski & Jemioło, 2007) in such a way that allows analysis of 

composites in which matrix is reinforced with many fiber families and its illustration on some non-trivial 

numerical examples. 

                                                 
*  Marcin Gajewski, PhD. Eng.: The Institute of Building Engineering, Faculty of Civil Enginnering, Warsaw University 

of Technology, Armii Ludowej 16; 00637, Warsaw; Poland,  m.gajewski@il.pw.edu.pl 
**  Prof. Stanisław Jemioło, PhD. D. Habil. Eng.: The Institute of Building Engineering, Faculty of Civil Enginnering, Warsaw 

University of Technology, Armii Ludowej 16; 00637, Warsaw; Poland,  s.jemiolo@il.pw.edu.pl 



 

 3 

2. Basic Assumptions and Constitutive Model of Anisotropic Hyperelasticity 

Strain energy function (SEF) of hyperelastic material reinforced with several fiber families can be 

postulated in the following additive form: 
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where 
M  is a strain energy function for matrix (SEFM), 

Rn are elastic strain energy functions of fiber 

families (SEFR), and 
np  stands for volume ratio of fibers in material volume unit. Matrix material is an 

isotropic material, for which SEF function is isotropic with respect to right deformation tensor TC F F , 

and left deformation tensor TB FF , where F  is so called deformation gradient tensor. The tensor F  

has a positive determinant det 0J  F , and symbol “T” in above relations stand for tensor transposition. 

According to the above assumption (isotropic function) the SEFM  1 2, ,M W I I J   is a function of 

three non-reducing invariants of deformation tensor: 
1 trI  C ,  2 tr cofI  C  and det detJ  F C . The 

SEFR function of n-th fiber family, which “works” in direction described with vector  nm X , is 

approximated as: 
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where 4
ˆtrn nI  M . The ˆ

nM  tensors represent parametric tensors 
n n n M m m  in actual configuration 

(e.g. ˆ T

n nM FM F ). In (2) the 
RnE  parameter have an interpretation of Young modulus of n-th fiber 

family. In this paper we are considering a special case of SEFM function, so called Ciarlet model for 

compressible materials: 
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also discussed in Jemioło (2002), where  
1

2 1
4

o o f        . The parameters: 
o  and 

o  can be 

interpreted as Lame constants. Function (3) is a poly-convex one and fulfills appropriate conditions of 

growth of elasticity potential if and only if 0o  ,  0,1f   and  2 1o o f   , cf. Jemioło (2002). 

From local energy and mass conservation laws (altogether with balance equations of linear and angular 

momentum) one can obtain the Kirchhoff stress tensor for matrix made of Ciarlet model in the following 

form: 
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From (2) one can obtain the following relation for Kirchhoff stress in n-th fiber family: 

  4
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So, the constitutive relationship for material reinforced with fiber families is as follows: 
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where σ  is a Cauchy’s stress tensor. The proposed constitutive model was implemented in the finite 

element method program ABAQUS through UMAT procedure for which constitutive relationship (6) has 

been rearranged into an incremental form, cf. ABAQUS (2000a and b). 

3. Compression and Tension Tests of an Elastic Reinforced Tube 

The problem of compression/tension of elastic reinforced tube in the direction of it’s axis by applying 

displacement boundary conditions at the bottom and top base is considered. On the other parts of pipe 

outside surface the zero stress boundary conditions are assumed. The pipe is made of hyperelastic 
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material with fiber reinforcement, characterized by constitutive relationship expressed by (6). The four 

cases are considered, i.e. lack of reinforcement, the reinforcement overlaps with direction 3, 

reinforcement is placed circumferentially and reinforced is placed helicoidaly, see Fig. 1. It is worth 

emphasizing that fiber placement directions are given in reference configuration, and during deformation 

undergo local changes. 

 

Fig. 1: FEM mesh for pipe of 100 mm length (Rw=8 mm, Rz=10 mm) with indication of node groups 

where boundary displacement conditions were assumed. 

For the node group marked as Node_ZH (all nodes belonging to the top base of the pipe together with 

nodes laying on interior and exterior side surfaces but not further from the edge than 6 mm) the zero 

displacement boundary conditions for all three displacement components are assumed. Next, all nodes 

marked as Node_Z0, cf. Fig. 1, were joined with some reference node by applying multi-point constraints 

(MPC) option which gives the possibility to assume displacement boundary conditions for all nodes 

through reference node. In that case, in reference node the zero displacement boundary conditions for 

components 1u  and 2u  (preserving circular shape) and for all rotation angles were assumed. The pipe 

compression is obtained by assuming non-zero displacement 3u  =-20 mm, and in case of tension test  

3u  = 50 mm. The following material data were assumed: p = 0.05, 
0  = 1.0

ME , 
0  = 1.5

ME ,  

ZE  =  26
ME , where 

ME  is an initial Young’s modulus of matrix material, and f = 0.2. 

All tasks were solved using standard Newton-Raphson incremental algorithm. The graphs of resulting 

cumulative compression and tension forces (denoted as 
ccF  and 

ctF , respectively) in reference node as a 

function of displacement 3u  are shown in Fig. 2. In Fig. 3 the contour graphs of Mises stresses on 

deformed compressed tubes configurations are presented for minimum obtained forces (beginning of 

local or global buckling). The main goal of this example is a comparison of solutions obtained for 

hyperelastic isotropic material with solutions obtained for implemented constitutive models of 

hyperelastic materials reinforced with differently placed fiber families. 

 

Fig. 2: The compression/tension cumulative force as a function of displacement u3  

for different types of fibre reinforcement. 
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a) b) 

  
c) d) 

  

Fig. 3: Contour graphs of Mises stresses for compression tests in the configuration corresponding to 

minimum force, as indicated in Fig. 2. 

4. Final Remarks 

In the paper the constitutive relationship for anisotropic hyperelasticity in case of fibre reinforced 

materials has been shown altogether with its numerical implementation in FEM system ABAQUS. Some 

example applications illustrating the compression/tension of the differently reinforced tube is presented 

proving correctness and robustness of the implementation. The most suitable application area for 

proposed relationship is probably biomechanics, and modeling of vasculature consisting of a complex 

system of arteries, arterioles, capillaries and veins. 
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