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Abstract: Auto-parametric effects are processes endangering structures during a seismic attack. Tall 

structures exposed to a strong vertical component of an earthquake excitation nearby the epicenter can 

collapse due to auto-parametric resonance effect. Vertical and horizontal response components being 

independent in the linear regime get into a complex interaction due to non-linear terms in post-critical 

regime. Two generally different types of the post-critical regimes are presented: (i) post-critical state with 

possible recovery; (ii) exponentially rising horizontal response leading to a collapse. A special attention is 

paid to processes of transition from semi-trivial to post-critical state in case of time limited excitation period 

as it concerns the seismic processes. Solution method combining analytical and numerical approaches is 

developed and used. Its applicability and shortcomings are commented. A few hints for engineering 

applications are given. 

Keywords:  Auto-parametric systems, Dynamic stability, Semi-trivial solution, Multi-modal vibration, 

Post-critical states.  

1. Outline of the System 

Non-linear dynamic effects are the most dangerous processes endangering structures during a seismic 

attack. Among them auto-parametric non-linear vibration in state of post-critical auto-parametric 

resonance, see Tondl et al. (2000), Hatwal et al. (1983) or Bajaj et al. (1994), can lead to collapse 

particularly in case of high slender systems or large dynamically sensitive structures. Auto-parametric 

resonance caused in the past heavy damages or collapses of towers, bridges and other structures. The 

main cause of these effects is a strong vertical component of an earthquake excitation in epicenter area. In 

sub-critical linear regime vertical and horizontal response components are independent and therefore in 

such a case no horizontal response component is observed. If the amplitude of a vertical excitation in a 

structure foundation exceeds a certain limit, a vertical response component looses dynamic stability, e.g. 

Benettin et al. (1980) and dominant horizontal response component 

arises and can lead to failure of the structure.  

The seismic type broadband random non-stationary excitation can be 

particularly dangerous and amplify these effects. From viewpoint of 

rational dynamics the problem is of the inverse pendulum type. Authors 

are involved in this topics related with earthquake engineering for a long 

time, see e.g. Náprstek and Fischer (2009, 2010, 2011) and others. 

In principle easily deformable tall structures are the most sensitive 

regarding effects of auto-parametric resonance (chimneys, towers, etc.). 

Therefore the structure itself is modeled as a console with continuously 

distributed mass and stiffness in order to respect the whole eigen-value 

and eigen-form spectrum, see Fig. 1. The subsoil model enables to 

respect vertical and rocking component of the response including 

internal viscosity of the Voight type. Mathematical model is deduced by 

Hamiltonian functional including kinetic and potential energies as well 

as the Rayleigh function:  
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Fig. 1: Outline of the 3-DOF 

autoparametric system. 
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Hamiltonian functional provides Lagrangian differential system linking strongly non-linear two-degree of 

freedom (TDOF) part with multi-degree of freedom (MDOF) part modeling continuous console to the 

simultaneous governing system, see e.g. Náprstek and Fischer (2009,2010), or Náprstek and Fischer 

(2011). The material damping of the console is proportional. Therefore the deformation of that can be 

expressed in a form of a convergent series: 
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where ( )      ( )  and basis functions   ( ) are eigen functions (eigen forms) of the differential 

equation: 
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with boundary conditions for a console beam:   ( )       
 ( )       
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The Lagrangian system for components  ( )  ( ) and components   ( ) arithmetizing coordinates   ( ) 

reads: 
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Solution method combining analytical and numerical approaches is presented in the final text together 

with its applicability and shortcomings. A wide parametric analysis is provided and regular and special 

cases indicated, quantified and commented. A few hints for engineering applications being motivated by 

these results are given. 

2. Post-Critical Response Types and Transition Effects 

The system shows that horizontal and vertical response components are independent in the semi-trivial 

regime, which is linear in such a case. Their interaction takes place due to non-linear terms in post-critical 

regime only. Interaction of nonlinear modes provided by the console and subsoil is investigated, as it 

comes to light that sub- and super-harmonic resonances can produce a number of effects typical for 

nonlinear approach particularly when internal resonances arise, see Fig. 2, where the sub-harmonic 

resonance effect is obvious. 

Complicated inter-resonance effects of quasi-periodic type are verified in order to detect an existence of 

possible beating processes related with a possible periodic energy transfer among degrees of freedom. A 

number of non-linear effects related with MDOF character of the rather weak console and its interaction 

with bottom part of the system is discussed, in the best knowledge of authors, for the first time. Various 

post-critical deterministic as well as chaotic types of the response are investigated as well. Attractive and 

repulsive post-critical limit cycles are typical and will be carefully discussed in the full text. Investigation 

being conducted using Lyapunov exponent testing makes possible to identify a number of interaction 

types of eigen-modes. 
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Two generally different types of the post-critical regimes are presented in the paper: (i) the close 

neighbourhood of the stable state (area between the semi-trivial solution stability limit and the limit of 

irreversibility); despite the response is strongly non-linear, structure can regain the stable state, when 

excitation drops below a certain limit; (ii) if the response leaves beyond the limit of irreversibility, the 

rocking response component looses any periodic character and rises exponentially leading inevitably to a 

failure of the structure without possibility of any recovery. In such a case an avalanche process 

throughout eigen-modes can emerge releasing accumulated energy in the system before the post-critical 

processes occurs. 

A special attention is paid to processes of transition from semi-trivial to post-critical state in case of time 

limited excitation period as it concerns the seismic processes, see Fig. 3. In the picture (a) the bifurcation 

point    is an origin of two branches: stable and unstable. It is obvious that for a short excitation interval 

(blue curve) the response follows the unstable branch for higher excitation amplitudes than it corresponds 

to    and only after a certain time it drops asymptotically to nearly horizontal stable branch. Similarly in 

pictures (b) and (c) we can observe that the response for a short excitation interval is nearly zero 

following the unstable branch and only later is rising to stable branch demonstrating large horizontal 

amplitudes. Due to this effect a significant increase of admissible excitation amplitude is provided 

contributing for the sake of the structure safety. 

 

 

a) 

 

b) 

  

Fig. 2: Instability intervals: a) Large excitation amplitude (   = 0.20); 

b) Medium excitation amplitude (   = 0.15). 

 

a)     b)     c) 

 

 

Fig. 3: Process of the stability loss and of the post-critical response:  

a) Bifurcation diagram of the vertical response component P - amplitude R;  

b) and c) Bifurcation diagrams of horizontal (rotation) components     - amplitudes P, S. 
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3. Conclusions 

Authors deal with easily deformable tall structures, which are very sensitive to effects of auto-parametric 

resonance (chimneys, towers, etc.). If the amplitude of a vertical excitation in a structure foundation 

exceeds a certain limit, a vertical response component looses stability and dominant horizontal response 

component arises. This post-critical regime (auto-parametric resonance) follows from the non-linear 

interaction of vertical and horizontal response components and can lead to a failure of the structure. 

In principle solution methods combining analytical and numerical approaches have been developed and 

used. Their applicability and shortcomings are commented. A few hints for engineering applications in a 

design practice are given. Some open problems are indicated. 
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