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Abstract: This paper is focused on the influence of the propeller blade lift spanwise distribution on whirl 

flutter stability. It gives the theoretical background of the whirl flutter phenomenon and the propeller blade 

forces solution. The problem is demonstrated on the example of a twin turboprop aircraft structure. The 

influences on the propeller aerodynamic derivatives and the influences on the whirl flutter speed and the 

whirl flutter margin respectively are evaluated. 
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1. Introduction 

Whirl flutter is the specific case of the flutter that includes additional dynamic and aerodynamic 

influences of propeller and engine rotating parts. Effect of a rotating mass increases the number of 

degrees of freedom and causes additional forces and moments. Moreover, rotating propeller causes a 

complicated flow field and interference effects between wing, nacelle and propeller. The essential fact is 

an unsymmetric distribution of forces on a transversely vibrating propeller. Whirl flutter may cause a 

propeller mounting unstable vibrations, even a failure of an engine, nacelle or whole wing. 

2. Theoretical Background  

The fundamental solution presented by Reed (1967) is derived for the system with 2 degrees of freedom 

as illustrated in Fig. 1. Engine system flexible mounting can be substituted by the system of two 

rotational springs (KΨ, KΘ). Propeller is considered as rigid, rotating with angular velocity Ω. System is 

exposed to the airflow of velocity V.  

Neglecting the propeller rotation and the aerodynamic forces, the two independent mode shapes will 

emerge with angular frequencies Ψ and Θ. Considering the propeller rotation, the gyroscopic effect 

makes two independent mode shapes merge to the whirl motion. The propeller axis shows an elliptical 

movement. The orientation is backward relative to the propeller rotation for the mode with lower 

frequency (backward whirl) and forward relative to 

the propeller rotation for the mode with higher 

frequency (forward whirl). The mode shapes of 

gyroscopic modes are complex, since independent 

yaw and pitch modes have a phase shift 90. 

Gyroscopic mode shapes cause harmonic changes of 

propeller blades angles of attack. They give rise to 

unsteady aerodynamic forces, which may under the 

specific conditions induce whirl flutter. Provided that 

the air velocity is lower than critical value 

(V < VFL), the system is stable and the motion is 

damped. If the airspeed exceeds the critical value 

(V > VFL), the system becomes unstable and motion 

is diverging. The state of the neutral stability 
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Fig. 1: Gyroscopic system with propeller. 
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(V = VFL) with no total 

damping is called critical 

flutter state and VFL is called 

critical flutter speed. 

Basic problem consists in the 

determination of the 

aerodynamic forces caused by 

the gyroscopic motion for the 

specific propeller blades. The 

kinematical scheme including 

gyroscopic effects according 

Reed and Bland (1961) is 

shown in Fig. 2. The 

independent generalized 

coordinates are three angles  

(φ, Θ, Ψ). We assume the 

propeller angular velocity constant (φ = Ω t), mass distribution symmetric around X-axis and mass 

moments of inertia JZ  JY. Considering small angles the equations of motion become:  
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We formulate the propeller aerodynamic forces by means of the aerodynamic derivatives as described 

later and make the simplification for the harmonic motion. Then the final whirl flutter matrix equation 

become: 
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The limit state emerges for the specific combination of parameters V and Ω, when the angular velocity ω 

is real. Whirl flutter appears at the gyroscopic rotational vibrations, the flutter frequency is the same as 

the frequency of the backward gyroscopic mode. The most critical state is KΘ = KΨ, it means ωΘ = ωΨ, 

when the interaction of both independent motions is maximal. 

The fundamental solution of the propeller aerodynamic forces was derived by Ribner (1945). Later on, 

the modified solution of Houbolt and Reed (1962) became available as well. The propeller aerodynamic 

forces are expressed as: 
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where is a dynamic pressure and R is a propeller diameter. The effective angles (Θ
*
; Ψ

*
) are basically 

expressed as the quasi-steady values ((     ( ̇  ⁄ ); (     ( ̇  ⁄ ) ) and the cij terms represent 

the aerodynamic derivatives. We neglect the aerodynamic inertia terms ( ̇   ̇ ;  ̇   ̇), make the 

simplification given by the symmetry (czΨ = cyΘ ; cmΨ = -cnΘ ; cmq = cnr ; czr = cyq ; czΘ = -cyΨ ; cnΨ = cmΘ ;  

cmr = -cnq ; cyr = -czq ) and we neglect the derivatives with low values (cmr = -cnq = 0 ; cyr = -czq = 0). As the 

result, we obtain 6 independent values of aerodynamic derivatives expressed by the propeller blade 

integrals that integrate the aerodynamic forces in the blade spanwise direction.  

 

Fig. 2: Kinematical scheme of the gyroscopic system. 
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The basic formulation was given by Houbolt and Reed (1962). It is limited to the 4-blade propeller and 

theoretical blade lift curve slope (a0 = 2). It includes only 3 integrals accounting for the in-phase 

aerodynamic effects. Extended formulation of the blade integrals is presented by Rodden and Rose 

(1989). It includes the aerodynamic lift lag effect by means of the Theodorsen function (F(kp)+jG(kp)), 

the Prandtl - Glauert correction to the compressibility and the correction factor accounting for the 

compressible flow blade aspect - ratio effect. Final correction is applied to account for the number of 

blades. Integration range is reduced to the thrusting part of the propeller. The propeller lift curve slope 

(a0) is treated as the effective (spanwise constant) value (a0 = a0eff). Contrary to Rodden's formulation, we 

use more precise approach, that treats the lift curve slope as the spanwise variable (a0 = a0 ()) accounting 

for the real propeller force distribution. In this case a0 moves under the integrand and the propeller blade 

integrals become: 
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where Ar is a blade aspect ratio, c is a blade local chord, kp is a blade local reduced frequency. A propeller 

advance ratio is defined as  = (V/R) and a blade dimensionless radius is defined as  = (r/R) where r 

is a blade local radius. M represent the forward flow Mach number. Aerodynamic derivatives are then 

expressed as: 
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3. Application Example  

The evaluation is performed on the structure of the EV-55M aircraft that is ordinary twin turboprop for 

9 - 13 passengers powered by PT6A-21 turboprop engines with Avia AV-844 propellers. Firstly, the 

evaluation of the aerodynamic derivatives is provided. The blade lift curve slope spanwise distribution as 

well as the geometry of the blade cannot be reproduced here. The effective value extracted by means of 

the RMS method of a0eff = 6.2478 is slightly lower comparing to the profile theoretical value of 2.  
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Fig. 3 shows the example of aerodynamic 

derivative dependence on the flow velocity 

considering both a0eff and a0 (). The derivative 

values considering a0 () are lower comparing 

to the ones using a0eff . This fact hold true also 

for the other ones which are not shown here. 

The final evaluation of the whirl flutter speed 

was performed using the NASTRAN program 

system supported by the in-house PROPFM 

software code. The effective stiffnesses of the 

engine mount in both vertical and lateral 

directions were reduced by 50% to reach the 

critical state within the reasonable velocity 

range wherever the standard analytical 

approach was employed. The results indicate 

the backward whirl flutter on the mode #2 that 

is the engine vertical vibrations mode. The 

flutter speed is VFL = 166.6 [m.s
-1

] considering 

the effective value of the lift curve slope, whereas the flutter speed become VFL = 182.0 [m.s
-1

] 

considering the real lift curve slope distribution. It represents the increase in the flutter speed by 9.2%. 

The flutter frequency was fFL = 5.8 [Hz], the difference between both cases was barely noticeable. 

Further explanation of the blade lift slope influence to the whirl flutter characteristics is provided in  

Fig. 4. It shows the stability margin defining the critical values of the structural parameters (e.g. vertical 

and lateral engine vibration mode 

frequencies) required to reach the neutral 

stability at the certain speed. Again, the real 

distribution of the lift curve slope gives the 

lower critical frequencies and thus higher 

reserve in terms of the whirl flutter stability 

with respect to the nominal state. The 

differences between both margins are 

ranging within (5.5 - 7.1)%. 

4. Conclusion 

Usage of the real propeller blade lift curve 

slope distribution increases the accuracy of 

results and raises the rate of reserve in terms 

of flutter stability. It causes decrease of the 

aerodynamic derivatives and, as the 

consequence, it increase the flutter speed 

and decrease the critical values of the 

structural parameters. Comparing to the 

usage of the effective value the derivatives 

may vary quite significantly.  
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Fig. 3: Aerodynamic derivative czΘ - blade lift slope: 

a0eff ; a0 (). 
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Fig. 4: Whirl flutter stability margins - blade lift  

slope: a0eff ; a0 (). 
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