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Abstract: In this paper the slender system subjected to Euler’s load has been presented. Considered system 

is composed of two elements: pipe and rod. The rod is mounted concentrically with the pipe; in such way that 

the deflection and angle of deflection of pipe and rod are identical. The investigated system is hinged on both 

ends. In the column between pipe and rod the two-parametric elastic element has been placed. Both 

transversal and rotational displacements are being limited by means of this element. In the work static 

problem of considered column was formulated on the basis of minimum total potential energy principle 

(static criterion of instability). Rectilinear  form of static equilibrium is only considered in this paper. On the 

basis of static criterion of instability the bifurcation load (the biggest load at which system is still in the 

rectilinear equilibrium) has been determined in relation to system’s parameters. The parameters of the 

system are as follows: stiffness of translational and rotational springs (elastic layer), flexural rigidity 

asymmetry factor (pipe and rod), parameter of location of elastic layer.  

Keywords: Column, Divergence system, Euler’s load, Two-parametric elastic layer. 

1. Introduction 

Slender systems subjected to both conservative and non-conservative type of loads were the subject of 

many investigations. Euler’s load (Euler, 1744; Uzny, 2011; Sokół, 2014), at which external force does 

not change the direction of action is the most popular one in slender systems. In literature the others types 

of external load of columns loads can be found. Generalized load (Bochenek and Życzkowski, 2004), a 

load with force directed towards the positive or negative pole (Gajewski and Życzkowski, 1969), 

characteristic load (Tomski’s load) (Tomski and Uzny, 2008, 2013a) can be considered as a conservative 

ones. Generalized Beck’s load (Beck, 1952; Tomski and Uzny, 2013b; Langthjem and Sugiyama, 2000) 

and generalized Reut’s (Langthjem and Sugiyama, 2000; Nemat-Nasser and Herrmann, 1966) load can be 

qualified as a non-conservative loads. 

Slender systems can be divided into constructions composed of the identical elements or elements with 

different bending and compression stiffness (Uzny, 2011; Tomski and Uzny, 2008). The second group 

can be characterized by two forms of static equilibrium: rectilinear and curvilinear. The magnitude of 

external load, at which rectilinear form occurs, is changing from zero up to value of bifurcation load. 

Curvilinear form of static equilibrium occurs between bifurcation and critical force. In this type the local 

and global instability phenomenon occurs (Uzny, 2011; Tomski and Uzny, 2008). The regions of local 

and global instability depend on flexural rigidity asymmetry factor. Slender system composed of two 

elements: pipe and rod with different stiffness was researched in work (Uzny, 2011), where a single-

parametric elastic layer was placed between pipe and rod. By means of this element an increase in 

bifurcation load has been achieved (especially in the area of local instability). Additionally in this system 

the change of buckling form; region of local instability is decreasing at greater stiffness of single-

parametric elastic layer.  

The main purpose of this work is to study an influence of two-parametric elastic layer on stability of 

system composed of pipe and concentrically installed rod.  
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2. Problem Formulation and Solution 

Considered column composed of pipe and rod is presented in Fig. 1b (column C2E). The rod is mounted 

concentrically with the pipe; in such way that the deflection and angle of deflection of pipe and rod are 

identical. System is loaded by compressive external force with constant line of action (Euler’s force). The 

investigated system is hinged on both ends as shown in Fig. 1a. In the column between pipe and rod the 

two-parametric elastic element has been placed. Elastic layer was modeled by means of spring system 

which consist of transversal spring (with rigidity CT) and rotational one (with rigidity CR). Location of 

elastic layer is defined by the parameter . In this study, it is assumed that total flexural rigidity of system 

is constant ((EJ)1 + (EJ)2 = (EJ) = idem). Flexural rigidity asymmetry factor is a variable parameter, 

which is defined as follows:  
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Bifurcation force of complex system will be compared to critical load of the system composed from the 

pipe only (column C1E) – Fig. 1c. Mathematical model of the investigated complex system (C2E) is 

presented in Fig. 1a. This model consists of four elements. Elements marked with subscripts 11 and 12 

correspond to pipe whereas subscripts 21 and 22 model the rod. Bending rigidities in the mathematical 

model are marked as follows: (EJ)11 = (EJ)12 = (EJ)1 and (EJ)21 = (EJ)22 = (EJ)2. 

 

Fig. 1: Considered systems. 

The problem has been formulated on the basis of the minimum total potential energy principle. 

 0V  (2) 

Potential energy of considered system is as follows: 
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Internal forces in individual elements of mathematical model are determined as (Uzny, 2011): 
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In equations (4) longitudinal rigidities of individual units are marked as (EA)ij. Geometrical boundary 

conditions of considered column are present below: 

         000 222212122111  lWlWWW ,    0121111 WlW  ,    0222121 WlW   (5a-h) 

    
0

2121
0

1111
2111 


x

I

x

I xWxW ,     22221212

22221212

lx
I

lx
I xWxW



  (5i, j) 



 

 4 

    
0

12121111
12

1111






x

I
lx

I xWxW ,     0
0

22222121
22

2121






x

I
lx

I xWxW  (5k, l) 

After substitution of (3) into minimum potential energy principle (2) and taking into account geometrical 

boundary conditions (5), the differential equation for unknown static displacement (6) and natural 

boundary conditions (7) were obtained: 
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The solutions of (6) can be presented in the following form: 
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Substitution of solutions (8) into boundary conditions (5), (7) one obtains the system of equations for 

which the matrix determinant is equated to zero; a transcendental equation for bifurcation force Pb. 

3. Results of Numerical Calculations 

The sample of results of numerical calculations is presented in Fig. 2.  

 

Fig. 2: Bifurcation load in relationship to the factor a. 
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Bifurcation load was determined as dependent on flexural rigidity asymmetry factor a. Calculations were 

performed for different values of transversal CT and rotational CR rigidities with  = 0.5 (elastic layer is 

placed on the half of system's length). Non-dimensional parameters, used for more general presentation of 

results of numerical calculations (Fig. 2), are defined as follows: 
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The bifurcation load of column C2E and critical load of C1E system are plotted in Fig. 2. The different 

types of lines were used in order to distinguish buckling modes. The magnitude of flexural rigidity 

asymmetry factor, at which critical force of column C1E is higher than bifurcation force of column C2E, 

corresponds to local instability of considered system. 

4. Conclusions 

In this paper an influence of two-parametric elastic layer on bifurcation load of a slender system 

composed of pipe and rod is presented. It was demonstrated that the increase of transversal rigidity as 

well as rotational one causes an increase of the bifurcation load. Influence of rotational rigidity on 

bifurcation load is noticeable even at smaller value of the flexural rigidity asymmetry factor. Parameters 

of rigidity of the elastic layer have also an influence on buckling mode (curves for column C2E – Fig. 2). 

In the future considered system can be further researched and developed (especially an influence of two-

parametric layer on vibration frequency). 
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