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Abstract: This paper deals with the implementation of periodic boundary conditions in homogenization to 

determine effective elastic properties of arbitrary composite systems assuming two specific implementation 

schemes. As an example, the homogenization procedure applied to a composite system with plain weave 

textile basalt reinforcement was examined. The geometry of the analyzed sample was idealized with the help 

of statistically equivalent periodic unit cell. The comparison of the effective properties shows consistency of 

both implementations.  
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1. Introduction 

Even with a large number of various numerical techniques at hand, the finite element method (FEM) is 

still considered to be the most universal method for solving variation formulated problems of physics 

connected to problems of field theory. One of the significant advantages of FEM in the field of continuum 

mechanics is particularly the possibility of solving tasks for universal geometric shapes of the analysis 

domain, universal load and support and also for complex constitutive relations of a material. Herein, FEM 

in adopted to solve the homogenization problem at the level of statistically equivalent periodic unit cell 

(SEPUC) of a textile reinforced composite formulated at the level of yarns, meso-scale. 

In particular, we are concerned with a representative volume element (RVE) having well defined 

geometry and boundary conditions. Since this RVE is assumed periodic, often termed a periodic unit cell 

(PUC), the formulation has to be accompanied by so called periodic boundary conditions. In terms of 

loading, two different approaches can be adopted, stress or strain control loading conditions, to arrive at 

the estimates of effective properties. In terms of numerical implementation, we compare two specific 

ways of implementing periodic boundary conditions here linked to FEln and OOFEM software products, 

respectively (Patzák and Bittnar). 

2. Solution in Terms of Fluctuation Fields - FEln 

First, we consider the FEln software product that allows for a direct application of the load in the form of 

macroscopically constant strain E, or stress Σ . Unlike most commercial software, here the primary 

unknown is the fluctuation part of the displacement field u*, which enables rather straightforward 

implementation of the periodic boundary conditions. This step will be explained as one particular point of 

a general 1st order homogenization scheme discussed next.  

To that end, suppose that the local strain field can be decomposed into the homogeneous, macroscopically 

linear part x EU  and the fluctuation part u*
 such that 

    xxx  uu E . (1) 
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Local strain thus becomes 

    xx  εEε . (2) 

The displacements u* are assumed periodic, the same displacements u* on opposite sides of the unit cell, 

to ensure that the fluctuation part of strain disappears up on volume averaging, i.e. 0ε* , Eε  . 

Introduction of local  xσ  and macroscopic σΣ   stress fields allows us to express the virtual format 

of Hill’s Lemma as  

     ΣExσxε
TT

  . (3) 

The local constitutive law reeds 

       xuxx εσ L . (4) 

Substituting Eq. (4) into Eq. (3) gives 

                ΣEε*ε*Eε*ε*EE
TTTT xxxxxxx   LLL . (5) 

Since E and  xε*  are independent, we can split Eq. (5) into two equations 

       xxxTT
ε*EEΣE LL  , (6) 

          xxxxx
TT

ε*ε*Eε* LL  0 . (7) 

Referring to (Šejnoha and Zeman, 2013) it can be shown that Eq. (6) and (7) are directly applicable when 

prescribing the overall stress Σ . In case of prescribed overall strain E, Eq. (7) reduces to 

        0 xxx ε*ε*E L . (8) 

There are two options how to account for the periodic boundary conditions. If starting directly from  

Eq. (6) and (7) or Eq. (8), the solution is searched in terms of unknown u*. In such a case the periodicity 

of u* is enforced simply by assigning the same code numbers to the associated degrees of freedom of u*. 

However, when using commercial codes implementation of periodic boundary conditions is not that 

straightforward and will be explained in more detail in the next section. 

3. Solution in Terms of Total Fields - OOFEM 

To begin with, assume a three-dimensional rectangular SEPUC with dimensions l (x-direction),  

b (y-direction) and h (z-direction), see Fig. 1. 

 

Fig. 1: Scheme of SEPUC. 
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The macroscopic linear displacements attain the form  
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u1-w4 corresponds to free nodal displacements of the supported nodes, see Fig. 1. The associated strain 

field is then provided by 
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Combining Eqs. (10) and (9) gives 

      zyxxzxyxxzyx uHzEyExEU ,,,, *22  , (11) 

    zyxyzyyzyx vzEyEV ,,,, *2  , (12) 

    zyxzzzyx wzEW ,,,, * . (13) 

The assumption of periodic boundary condition leads to 

 
Aa uuuu  21

, (14) 

 
Bb vvv  3

, (15) 

 
Cc www  4

. (16) 

When macroscopic constant strain is prescribed, the control displacements in the form (11) - (13) need to 

be prescribed while for the stress control conditions, the appropriate averages of stress components can be 

ensured by applying appropriate concentrated forces according to the next equations 

 lhbT
ΣF B . (17) 

4. Evaluation of Effective Properties Using Periodic Boundary Conditions 

As an example, we consider the composite reinforced by plain weave basalt reinforcement, see Fig. 2. 

The actual analysis was performed exploiting the SEPUC in Fig. 1, see (Šejnoha and Zeman, 2013, Vorel 

et al., 2013) for more details.  

The analyzed composite consists of three materials – pores, matrix and basalt reinforcements. At the level 

of SEPUC (meso-scale), the reinforcements are introduced through the homogenized properties of yarns. 

These in turn are found from an independent homogenization procedure carried out first at the level of 

fibers (micro-scale) here employing the Mori-Tanaka averaging scheme (Šejnoha and Zeman, 2013). This 

method builds upon the knowledge of the shape and orientation of the reinforcements, their material 

properties and volume fractions. The resulting homogenized properties of the basalt yarn together with 
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the assumed matrix properties are listed in Tab.1. Tab. 2 then summarizes the effective stiffnesses of the 

entire system obtained for the two loading conditions and the used software products. 

 

 

Fig. 2: a) Real microstructure; b) Discretization to finite elements; c) Two-layer SEPUC. 

 

Tab. 1: Considered material properties. 

E xx E yy E zz G yz G xz G xy ν yz ν xz ν xy

Basalt yarns 53 6.1 6.2 2.6 3.6 3.6 0.3 0.23 0.23

Matrix

Type of 

material
[GPa] [GPa] [-]

0.24

Material property

2.12 0.85  
 

Tab. 2: Elements of stiffness tensor of composite system. 

C 11 C 22 C 33 C 44 C 55 C 66

Feln - strain control 13.162 13.168 0.542 0.328 0.329 1.758

Feln - stress control 13.162 13.168 0.542 0.328 0.329 1.758

OOFEM - strain control 13.540 13.539 0.704 0.372 0.372 1.756

OOFEM - stress control 13.339 13.342 0.695 0.371 0.371 1.753

Homogenization    

procedure

Composite with basalt reinforcement

Stiffness tensor elements [GPa]

 

5. Conclusions 

Four particular approaches were considered in this paper to estimate the effective elastic properties of a 

multi-layered textile composite reinforced with basalt fabric. The solutions performed in terms of the 

fluctuation (FEln) as well as total (OOFEM) displacements were examined. It is evident that both 

formulations deliver almost the same results regardless of the assumed loading conditions. Thus both 

procedures to implement the periodic boundary conditions are equally applicable.  
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