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Abstract: This note deals with the elector-osmosis phenomena in the cortical bone micro-structure 

considered as porous medium with one porosity level. The microscopic model is given by the system of 

equations describing the ionic transport in a canalicular network saturated with a bone ionized fluid. 

Unfolding homogenization method is used to derive effective equations for the ion concentrations and 

electric field potentials.  
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1. Introduction 

The electro-osmosis in the porous medium is a multiscale phenomenon with numerous applications in 

geophysics or tissue biomechanics. In particular, the electro-osmosis is responsible for important 

physiological processes in the cortical bone tissue. Cortical bone is seen as a highly hierarchical structure 

with multiple porosities on different scale levels of the osteon; usually the following three main levels are 

distinguished (Moyne and Murad, 2002). The vascular porosity level is the largest one, represented by the 

Haversian (or osteonal) and the Volkmann canals distributed in the collagen-apatite matrix. This matrix is 

porous; it incorporates lacunae and canaliculi which form the lacuno-canalicular porosity. Its matrix is 

formed by porosity associated with the space between collagen and the crystallites of the mineral apatite.  

The present work is focused on electro-osmosis phenomena at the lacuno-canalicular porosity level, 

further referred to as the microscopic level. At this scale the mechanotransduction is an important 

phenomenon responsible for the bone tissue resorption and deposition (Rohan et al., 2012). Both these 

processes are related to the strain generated electric potentials which are associated with the electrolyte 

flows in the pores. 

The lacuno-canalicular porosity (characteristic scale l ≈10 nm) can be modeled as a porous medium with 

fluid filled pores in the solid matrix. The fluid is a solution with two types of monovalent ions of opposite 

polarizations (cations Na
+
 and anions Cl

-
). Further, we consider the solid phase and the solid-fluid 

interface, both featured by negative electric charges.  

In this short text, in Section 2, we present a mathematical model of electro-diffusion relevant to the 

porosity level and report on the homogenization result in Section 3, to provide an effective model relevant 

to the macroscopic scale, i.e. the osteon level. The numerical implementation of the two-scale modeling 

has been made and is illustrated in Section 3.  

2. Mathematical Model  

This section provides a brief description of mathematical relations describing the electro-osmosis at the 

microscopic level. The model describing macroscopic behaviour was obtained by homogenization. 
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2.1. Model of electro-osmosis 

The porous medium occupies the domain  with coordinations x  R
n
, which is decomposed into solid 

and fluid parts denoted as s and f, respectively. The solid-fluid interface is defined as  

f s with the outward normal unit vector, n in general, thus n
s
 = - n

f
. Through the text the 

symbol  denotes a boundary of a domain and subscripts s and f refer to quantities belonging to the solid 

and fluid parts, respectively. Further, the mathematical model of electro-diffusion is introduced. 

 .S 0 = S          in s (1) 

 .f 0 = f          in f (2) 

 n .  = 0          on  (3) 

 n
f
 . f f =   /e   + /2          on f   (4) 

 n
s
 . s s =   /e    /2          on s   (5) 

  Q

/ t + wf . Q


  .D. (Q


  (z

 
F / RT) Q

 
) = 0          in f (6) 

 n .D
 

. (Q

  (z


F/RT)Q


) = 0          on  (7) 

 Q
 

= Q


0          on  \  (8) 

Eqs. (1) and (2) are the Gauss-Poisson equations of electrostatics in the solid and fluid, where d,d = f, s 

is relative permitivity, 0 is permitivity of the void space, d is a volume electric charge and by  is the 

electric potential. Using Faraday constant F and the valence of ion particles z
+
 = 1, z


 = 1, the volume 

electric charge in the fluid can be expressed, by the definition, as the product between the molar charges 

and the difference of concentration of cations Q
+
 and anions Q


, thus f = F(z

+
Q

+
   z


Q


). 

The two boundary conditions (4) and (5) result from one-dimensional electrostatics Dirichlet problem 

describing charge distribution in a thin layer of thickness e on the solid-fluid interface, where  represent 

modified charge. The condition (3) means that the medium is isolated from outer space. 

The movement of ions is described by the Nernst-Planck equation (6), for Newtonian incompressible 

fluid with vector of convection velocity wf and absolute temperature T. Water-ion diffusion coefficients 

for cations and anions are in form of second-order tensors D

 and R is constant of ideal gas. By condition 

(8) the electroneutrality is preserved, while (7) expresses the flux of ions through  

2.2. Microscopic model 

Following the approach introduced in the report Rohan (2012), the upscaling of linearized system (1)-(8) 

in its dimensionless weak form was performed using the periodic homogenization using the assumption 

of material periodicity; is assumed to be generated as a periodic lattice based on the so-called 

representative periodic cell (RPC) Y with coordinates y = x/, where 
0
 is the small parameter of the 

asymptotic analysis, describing the scale between macro- and microscopic coordinates. The 

dimensionless potentials 
d and concentrations 

 are decomposed into their macro- (denoted by 

superscript 0) and microscopic (superscript 1) parts as  


(x) =  

(x, x/)+
(x, x/)             

(x) =  
(x, x/)+

(x, x/) 

Knowing osteon micro-structure, namely the canalicular network geometry, the RPC Y is decomposed 

accordingly to domain , Y = Ys  Yf  Y, Yf = Y \ Yf,  Y = Ys  Yf. By the homogenization, the local 

problems on the RPC Y are obtained, as follows: Find (1
f,

1
s,

1
) such that for x   
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  (9) 

  (10) 

for all test function 1
,
 1

d in Sobolev space of admissible Y-periodic functions H
1
 (Yd). By virtue of the 

problem linearization, c

 are given ionic concentrations and  = zF/RT. Symbol    refers to 1/Y    . 

2.3. Homogenized model 

Following steps from the report Rohan (2012), the microscopic parts of variables (1
f,

1
s,

1
) can be 

express as a linear combinations of so-called corrector basis functions. Those functions represent 

characteristic response on the RPC Y and are necessary for expressions of effective coefficients D


H, B


H, 

A
d

H, C


H, S


H approximating characteristics of the macroscopic medium. The homogenized macroscopic 

form of the electrostatic equation for the potential 0
f,

0
s in the solid and the fluid yields  

  (11) 

for all 0
d  H

1
(). Note, that  is an operator of a mean value of a variable over the interface. By over-

line the dimensionless variables are denoted. 

The electro-diffusion on the macroscopic scale is described by two equations for concentrations (0
)  

  (12) 

for all  
0

  H
1
(). If we consider symmetric electrolyte, Eq. (11) becomes independent on the 

concentration and, thus, can be solved separately from Eqs. (12), now reduced to only one equation for 

variable0
, see (Turjanicová, 2013). 

3. Results 

The homogenization procedure and homogenized problem on macroscale was implemented in the 

software SfePy. The canalicular level was represented by cubic RPC with three connected channels in 

directions of main axes. The homogenized problem given by Eqs. (11) and (12) was solved on the simple 

prismatic geometry, representing small part of osteonal wall. The left side of Fig. 1 illustrates the 

macroscopic solutions (0
f,

0
s,

0
) alongside the y-coordinate of test problem with boundary and initial 

conditions 0
s (x, l, z) = 100, 0

f (x, l, z) = 0,0
f (x, l, z, t) = 10, 0

(x, y, z, 0) = 10. On the right in the  

Fig. 1 is shown recovered microscopic diffusion flux on the RPC Y representing microstructure.  

4. Conclusions  

This work reports on the two-scale modeling of electro-osmosis phenomenon in the cortical bone osteon. 

The microscopic model with only one porosity level was introduced, whereby the flow problem was 

treated as decoupled. The homogenized model enables to describe distribution of voltage in both solid 

and fluid phases and the ionic concentrations at the macroscopic level of bone osteon. By virtue of the 

corrector results, the microscopic distribution of electric fields and concentration fluxes can be recovered. 

   ~ 
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It is possible to assess influence of the geometrical arrangement of the fluid channels in the 

microstructure on the effective material properties and the local electro-osmosis processes. In the further 

research an extension of the model for coupled fluid-solid interaction will be pursued and the role of the 

solid piezoelectricity will be reviewed in the context of the recent work (Lemaire et al., 2011), where an 

alternative upscaling approach was used.  

 

Fig. 1: a) Solutions (
0

f,
0

s,
0
) of homogenized problem;  

b) Recovered microscopic diffusion velocity on the RPC Y. 
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