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Abstract: Moisture from walling m4sonry, in particular in historic and protected buildings, is often removed 

by means of air cavities located in walls under the ground level. The air flow should be, if possible, almost 

uninterrupted so that this method could be efficient. This paper discusses the calculation of the air flow 

velocity inside the wall cavities. 
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1. Introduction 

Air insulation methods have ranked among frequent methods used for removal of moisture from walling 

masonry. This is, in particular, the case of historic buildings. When designing, an empiric approach is 

often used for air cavities. The air flow should be, if possible, almost uninterrupted so that this method 

could be efficient in the air cavities. The calculation below is for an air cavity (see Fig. 1) with natural 

flow of air where both the suction and exhaust holes are located at the outside. 

2. Calculating an Open Air Cavity 

In order to calculate performance of an air cavity in a wall it is necessary to determine the velocity of air 

in the air cavity  wx m.s
-1
, the temperature of the air which flows in the air cavity  tx C, the partial 

pressure of water vapours in the air cavity  pdx Pa, the partial pressure of water vapours in the air cavity 

upon saturation  p
“
dx Pa, condensation of water vapours in the air cavity and a pressure drop of the air 

flow  p Pa, the pressure loss  pz Pa, and to decide whether the air cavity works properly. This 

paper discusses only the calculation of the air flow velocity and the related development of temperature of 

the air flow in the air cavity. 

3. Velocity of the Air Flow in the Air Cavity 

In past, the relation for calculation of the air flow velocity in an open air layer (for instance, in calculation 

of two-layer roofs) was developed on the basis of generally known equations which are valid for the 

pressure drop of the air flow in the air cavity and the equations which describe the friction losses and 

resistance integrated into the air cavity. By analogy, this relation can be used in calculations of air cavities 

through which the air flows naturally. This relation is specified in (Řehánek, 1982). The equation for the 

air cavity is as follows: 
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where:  h m  is the difference in heights between the axis of the suction and exhaust holes. 

  v kg.m
-3
  is the volumetric weight of the outdoor air. 
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x kg.m
-3
  is the volumetric weight of the air in the air cavity located in the x distance from 

the suction hole. 

wv m.s
-1
  is the wind velocity which is determined either pursuant to ČSN 73 0540-3, 

(Řehánek, 1982) or on the basis of local meteorological data. 

An   is the aerodynamic coefficient on the wind side (Aa = 0.6). 

Az   is the aerodynamic coefficient on the lee side (Aa =  0.3). 

The aerodynamic coefficients Aa  and Az are used only if the air cavity is connected to the 

outdoor air. 

lx m  is the length of the section in the air cavity. 

   is the coefficient of integrated resistance (see ČSN 73 0540-3 and (Řehánek, 1982)). 

dr m  is the equivalent diameter of the air cavity located in the x distance from the suction 

hole: 
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where:  v m  is the internal ground clearance of the air cavity. 

s m  is the internal free width of the air cavity. 

   is the resistance coefficient which depends on the Reynolds number Re and is as 

follows:  

 a) for the laminar flow (Re  2320):  
eR

64
                                            (3) 

 b) for the turbulent flow (Re  2320):  
237.0Re

221.0
0032.0                   (4) 

where:  Re  is the Reynolds’ number :               


rx dw 
Re                          (5) 

where:  dr m  is the equivalent diameter of the air cavity. 

wx m.s
-1
  is the air flow velocity in the air cavity. 

 m
2
.s

-1
  is the kinematic air viscosity which can be determined as follows: 

  12  sm
x


  (6) 

where:  x kg.m
-3
  is the volumetric weight of the air in the air cavity in the x point located out of the 

suction. 

 Pa.s  is the dynamic air viscosity which can be determined as follows: 

  = (17.2 + 0.047 . tx).10
-6   
Pa.s  (7) 

where:  tx [C  is the temperature of the air in the air cavity located in the x distance from the suction  

 hole. 

The most complicated part of the calculation is, however, the calculation of the velocity of the air which 

flows through the air cavity with natural air flow - wx m.s
-1
 . The reason is that the velocity depends on 

two parameters: 

1) on the resistance coefficient   which depends, in turn, on the air flow velocity wx m.s
-1
 and 

on the Reynolds’ number Re , 

2) on the volumetric weight of the air in the air cavity in the distance x from the suction, x  kg.m
-3
, 

which, in turns, depends on the temperature of the air tx C in the air cavity in the distance x. 

This means, no explicit solution is possible for the velocity of the air flow in the air cavity - wx m.s
-1
.  

A numerical approach only can be used. It is advisable to use a software application. 
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Fig. 1: Scheme of air cavity  

in wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Calculating the Temperature in the Air Cavity 

The temperature in the air cavity is calculated using the balance equation: 

                      Q = Q1 + Q2 + Q3 + Q4   W     (8) 

where: Q W is the total heat transfer rate of the air which 

              enters the air cavity. 

          Q1 through Q4 W is the quantity of the air which 

              enters the air cavity through the structures  

              No. 1 to No. 4. 

                       Q1 = v.U1.(t1 – tx).dx   W       (9) 

                       Q2 = s.U2.(t2 – tx).dx   W            (10) 

                       Q3 = v.U3.(t3 – tx).dx   W             (11) 

                       Q4 = s.U4.(t4 – tx).dx   W                  (12) 

where: v m is the internal ground clearance of the air 

                 cavity. 

            s m is the internal free width of the air cavity. 

            U1 through U4 W.m
-2

.K
-1
 are the heat transfer 

                 coefficients No. 1 through 4 for the structure 

             t1 through t4 C are the ambient air temperatures 

                 No. 1 through 4 for the structure outside  

             tx C  is the temperature of the air inside the air 

                 cavity located in the x distance from the suction hole. 

The equation is as follows: Q = Qt   W (13) 

where: Qt W  is heat transfer rate which increases the temperature of the air in the air cavity by dtx 

 Qt = c M dtx    W (14) 

 M = x.s.v.w   kg.s
-1
 (15) 

where: w m.s
-1
  is the air flow velocity in the air cavity. 

x kg.m
-3
  is the volumetric weight of the air in the air cavity located in the distance x from 

the suction hole. 

v m  is the internal ground clearance of the air cavity. 

s m  is the internal free width of the air cavity. 

c J.kg
-1

.K
-1
  is the specific thermal capacity which results from the formula below: 

 c =1010 + 0.12tx    J.kg
-1

.K
-1
 (16) 

where: txC  is the temperature of the air inside the air cavity located in the x distance from 

the suction hole. 

Because this equation can be used for calculation of the specific thermal capacity only if the air is dry, it 

is possible to use directly c = 1010 J.kg
-1

.K
-1 

in the calculation. 

Having substituted Q, Q1, Q2, Q3 and Q4 in (8) one obtains: 

c.M.dtx = v.U1.(t1 – tx).dx + s.U2.(t2 – tx).dx + v.U3.(t3 – tx).dx + s. U4.(t4 – tx).dx 

c.M.dtx = v.U1.t1.dx – v.U2.tx.dx + s.U2.t2.dx – s.U2.tx.dx + v.U3.t3.dx – v.U3.tx.dx + s.U4.t4.dx – s.U4.tx.dx 

c.M.dtx = v.U1.t1.dx + s.U2.t2.dx + v.U3.t3.dx + s.U4.t4.dx – v.U1.tx.dx – s.U2.tx.dx – v.U3.tx.dx – s.U4.tx.dx 

c.M.dtx = (v.U1.t1 + s.U2.t2 + v.U3.t3 + s.U4.t4). dx – (v.U1 + s.U2 + v.U3 + s.U4). tx.dx 

The terms in the brackets can be expressed as the constants A and B: 

A = v.U1.t1 + s.U2.t2 + v.U3.t3 + s.U4.t4 

B = v.U1 + s.U2 + v.U3 + s.U4 
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Then, one obtains: 

c.M.dtx = A. dx – B. tx.dx 

c.M.dtx = (A – B. tx). dx 

After modification: 
Mc

d

tBA

dt x

x

x





. 

After substitution: A – B.tx = Z 

 dZ =  B. dtx 
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Equation integral: C
Z

d
d
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B z
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 CZx
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B
 ln

.
. 

The integration constant is derived from a general boundary condition: x = 0, then tx = t0. 

This means, the temperature of the air at the beginning of the air cavity is same as the temperature of the 

air at the exit, t0. If x = 0 and the boundary condition above is fulfilled, the equation is as follows:  

ln Z = ln(A  B. t0) = C 

so:     x
Mc

B
tBAtBA x 


 0lnln . 

After modification:  
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x
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B

x etBAtBA 0 , 

then:   AetBAtB
x
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B

x 




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


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
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0  

   AetBAtB
x

Mc

B

x 










.

0 . 

Resulting formula: 
 

B

etBAA
t

x
Mc

B

x















 0    C, (17) 

where:  x m  is the distance from the point from the start of the air cavity. 

      tx C is the temperature in x in the air cavity. 
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