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Abstract: In this paper, the results of studies on transverse vibrations and instability of a geometrically 

nonlinear column with internal crack subjected to Euler’s load are presented. The investigated column is 

composed of two members. The bending rigidity stiffness between members is described by the bending 

rigidity ratio. The internal member consists of two elements, connected by a pin and a rotational spring of 

stiffness C. The rotational spring stiffness C shows the size of crack. The boundary problem has been 

formulated on the basis of the Hamilton's principle. Due to the geometrical nonlinearity of the system, the 

solution of the problem was performed by means of the perturbation method. The natural vibration 

frequencies were computed after obtaining the equations from the first power of the small parameter ε. The 

results of numerical calculation illustrate the influence of the bending rigidity factor and crack size on 

vibration frequency and critical loading of the system. 
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1. Introduction 

The types of connection between elements of the structure as well as physical and geometrical features 

have great influence on dynamic behavior of the system. The failure of the structure may be caused by the 

crack propagation. The vibration monitoring and crack detection are needed to prevent system failure. 

The knowledge of crack effect on static and dynamic behavior is important issue in practical applications. 

The problems of analysis of the structures with cracks (cracks can be divided into always open and 

breathing ones), dynamic characteristics of systems and mathematical models have been discussed in past 

years by Anifantis (1981), Chondros and Dimarogonas (1989), Lee and Bergman (1994), Chondros 

(2001), Binici (2005). 

In this paper the massless rotational spring represents the crack. The spring stiffness coefficient depends 

on the crack depth. The natural boundary conditions satisfy the continuity of transversal and longitudinal 

displacements, bending moments and shear forces in the point of location of rotational spring (Uzny, 

2011). In many scientific papers authors are focused only on vibration analysis of cracked single columns 

(Arif Gurel, 2007). In this paper the two member column with internal crack has been investigated. 

Additionally, the influence of the different magnitudes of bending rigidity factor between the elements of 

the system on dynamic behavior is also taken into the account.  

The investigated system due to its geometrical features is treated as a slender one. Main objective of this 

work is monitoring of the structure's dynamic behavior. The monitoring is based on vibration frequency 

and shape mode analysis. The critical force magnitude as a function of a cracked system is also presented. 

The obtained magnitudes are compared to the uncracked system. The results of numerical calculations 

allow to predict the possible crack initiation in the cantilever two member column loaded by axially 

applied external force with constant line of action. Furthermore, the investigated wide range of 

magnitudes of bending rigidity factor gives a scope on dynamic behavior of the system in different 

configurations.  
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2. Problem Formulation 

In the Fig. 1 the investigated cantilever column is presented. Rods (2) and (3) are connected by the pin 

and rotational spring of stiffness C (the smaller magnitude of C the greater crack size). The system is 

loaded by the external force P applied in the point of connection of rods (1) and (3). Rods have the 

lengths  l1, l2, l3  respectively. The physical model of the investigated system may be composed of two 

coaxial tubes, tube and rod or be a flat frame. 
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Fig. 1: Bent axes diagram of the investigated system. 

The boundary problem has been formulated on the basis of the Hamilton's principle: 

 0)EE(
2

1


t

t

pk dt  (1) 

where the kinetic E
k
 and potential E

p
  energies are expressed as follows:  

 
















3

1 0

2
),(

2

1
E

i

l

ii

ii

k
i

dx
t

txW
A  (2) 

 

),,(
),(),(

2

1

),(

2

1),(),(

2

1
E

11

2

2

22

03

33

3

1 0

2
2

0

2

2

2

p

223

tlPU
x

txW

x

txW
C

dx
x

txW

x

txU
AEdx

x

txW
JE

lxx

i

l

i

ii

i

ii
ii

l

i

ii
ii

ii
































































































 
 (3) 

where the following notation is used:  Ei – Young modulus, Ji – moment of inertia, Ai – cross section area 

i – material density C – rotational spring stiffness, P – external load. Substitution of equations (2) and 

(3) into (1) leads to among alia the equations of motion (4) 
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and natural boundary conditions. The geometrical and natural boundary conditions are as follows: 
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3. Results of Numerical Calculations 

The results of numerical calculations shown in Figs. 2 and 3 are presented in the non-dimensional form, 

where  
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Fig. 2: External load vs. vibration frequency for 

different crack size (d2 = 0.5, rm=  rw = 1). 

Fig. 3: Influence of crack size on maximum load 

magnitude (d2 = 0.5, rw = 1). 

In the Fig. 2 an influence of crack size localized in the middle of the column is presented. When the crack 

is small (c = 10, 100) the magnitudes of maximum load are comparable. With the reduction of the 

rotational spring stiffness (c = 5, 3, 1, 0.5) the decrease of natural vibration frequency and critical loading 

occurs. It can be concluded that the critical force strongly depends on crack size, as illustrated on – 

Fig. 3. The critical force of the system without crack (the investigated system with great 

magnitude of c can be treated as a particular case which corresponds to Euler's column) is  

4

2
crp . 

In the case when the bending rigidity factor ratio between rods (1) and (2) is changing regardless to crack 

size the natural vibration frequency and maximum loading are varying. If rm parameter is greater than 1 
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(E2J2 > E1J1), then with the growing crack size the reduction of vibration frequency and maximum 

loading appears (Fig. 4). When rm < 1 the opposite situation takes place. In the Fig. 5 the curves on the 

plane p - rm  for different crack size have been plotted.  

  

Fig. 4: External load vs. vibration frequency for 

different rigidity factors (d2 = 0.5, c = 3, rw = 1). 

Fig. 5: Rigidity factor as a function of external 

load for different crack size (d2 = 0.5, rw = 1). 

The reduction of rm regardless to crack size causes an increase of maximum loading capacity of 

the column. With the rm > 1, the growing crack size corresponds to rapid decrease of p magnitude. The 

change of maximum force magnitude results in vibration frequency change. 

4. Conclusions 

In this paper the influence of the bending rigidity factor ratio between rods (1) and (2) on the dynamic 

behavior of the cantilever column with internal crack have been investigated. The results of numerical 

calculations can be used to identify crack size on the basis of natural vibration frequency analysis. It can 

be concluded that crack size has significant influence on vibration frequency and maximum load 

magnitude. For larger crack size the lower critical load was obtained. For rm  > 1 the influence of the crack 

size on investigated parameters is significant. There exists crack size above which the change in rm 

parameter on maximum load and vibration frequency is very small. The deviation in the dynamic 

behavior of the investigated system might be considered as a possible indicator of crack initiation. 
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