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Abstract: The general equations for the transverse vibration of Timoshenko beam have been used since they 

were derived by means of classical derivatives of the shear force, the bending moment, the rotation of a cross 

section and the deflection of the beam. However these derivatives are not defined at such points of a center-

line between ends of the beam in which there is a concentrated support or a concentrated mass or a 

concentrated mass moment of inertia or an internal hinge connecting beam segments, which are 

discontinuities that can be met with in practice. We have applied distributional derivative for  discontinuous 

shear force, discontinuous bending moment, and discontinuous rotation of a cross section of the beam in 

order to derive a generalized mathematical model for free transverse vibration as a system of partial 

differential equations. We have computed general solution to the generalized mathematical model for 

prismatic beam by means of symbolic programming approach via MAPLE. As a result of this approach, 

computing natural frequencies and modal shapes of the beam, we do not have to put together any continuity 

conditions at discontinuity points mentioned. 
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1. Introduction 

Classical analytical method of calculating natural frequencies of a beam with discontinuities is based on 

the following main steps (Timoshenko, 1937). Firstly we divide the beam into segments without 

discontinuities. Secondly we find continuous solution to a differential equation of motion for each 

segment separately. Thirdly we express boundary conditions for each segment, and continuity conditions 

among adjoining segments leading to a homogeneous system of linear algebraic equations. Finally we 

derive a frequency equation as a condition of nontrivial solution to the homogeneous system of linear 

equations.  

Applying distributional derivative definition for discontinuous shear force, discontinuous bending 

moment, and discontinuous rotation of a cross section of a beam, we can derive a mathematical model for 

free transverse vibration of Timoshenko beam with discontinuities caused by concentrated supports or 

concentrated masses or concentrated mass moments of inertia situated between ends of the beam, or 

hinges connecting beam segments. This mathematical model can be solved like only one differential task 

without dividing the beam into segments where all the continuity conditions among adjoining segments 

are fulfilled automatically. Using this approach, we have only four integration constants irrespective of 

the number of the discontinuities. 

2. Classical Equations of Motion for Free Transverse Vibration of Timoshenko Beam 

According to Timoshenko’s theory, we can express simultaneous differential equations of motion for free 

transverse vibration of the beam without discontinuities in the shear force, in the bending moment, in the 

rotation of the cross section or in the transverse displacement of the centerline of the beam (Rao, 2007) as 
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where w(x, t) is the total transverse displacement of the beam centerline, ( ) ,x t the rotation of the cross 

section assumed without warping, A(x) the cross-sectional area, J(x) the area moment of inertia, k the 

dynamic shear correction factor (Mindlin and Deresiewicz, 1953; Dong et al., 2010), E the modulus of 

elasticity (Young’s modulus), G the shear modulus of elasticity, ρ the density. 

3. Mathematical Model for Free Transverse Vibration of Timoshenko Beam with Discontinuities 

In order to be able to express possible discontinuities in shear force, bending moment or in rotation of 

cross section along a centerline of a beam mathematically without cutting the beam into segments that 

would be without discontinuities in support, loading or without internal hinges, we use distributional 

derivative (Schwartz, 1966; Štěpánek, 2001; Kanwal, 2004), which consists of two main parts. Its first 

part is a classical derivative, while the second one is distributional as a sum of products of the Dirac 

singular distribution moved into the point of the discontinuity and a magnitude of the jump discontinuity 

of the quantity being differentiated. 

When a beam supported at concentrated supports or carrying concentrated inertia masses between its ends 

is vibrating, jump discontinuities in shear force can occur at corresponding points of centerline of the 

beam. Expressing the first classical partial derivative of the shear force with respect to x from the force 

equation of motion for an element cut out of the beam, and adding distributional parts in the form of the 

product, we can derive Eq. (3), where ri(t) is a reaction force at ith concentrated support at a point x = ai 

(0 < ai < l), l is the length of the beam, mi  is a concentrated inertia mass at a point x = bi (0 < bi < l), 

Dirac(x-ai) denotes the Dirac distribution moved into the point of the discontinuity, n1 is a number of 

point supports, and n2 is a number of concentrated inertia masses. 

When a beam carrying concentrated masses with moments of inertia of Ji at points x=ci (0 < ci < l) is 

vibrating, jump discontinuities in bending moment can occur at these points. Expressing the first classical 

partial derivative of the bending moment with respect to x from the moment equation of motion for an 

infinitesimal element of the beam, and adding products of a magnitude of the jumps and the Dirac 

distribution situated at the point of the discontinuity, we can acquire Eq. (4), the right hand side of which 

is the distributional derivative of the bending moment covering n3 jump discontinuities. 

If a beam containing hinges connecting segments of the beam at points x=di (0 < di < l) is vibrating, jump 

discontinuities in rotation of the cross section of a magnitude ψi(t) may be found at these points. 

Expressing the first classical partial derivative of the rotation of the cross section with the respect to x 

from the deformation relation of the beam centerline curvature, and adding corresponding distributional 

parts, we can obtain Eq. (5), where n4 is a number of internal hinges. 
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4. Free Vibration Solution 

Supposing a harmonic time variation of solution to equations (3) to (6) as 
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where Ω is a circular frequency of vibration, and denoting amplitudes of vibration at points with 

concentrated transverse inertia forces and bending moments as  
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we can derive a system of ordinary differential equations (8) to (11) for unknown general shapes of the 

deflection (ws), the rotation of the cross section ( s ), the bending moment (Ms), and the shear force (Qs) 

for a uniform beam as 
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Characteristic functions of uniform Timoshenko beam with discontinuities 

We have used the Laplace transform method so as to compute general solution to the system of Eqs. (8) 

to (11), i.e. characteristic functions of the beam, with integration constants in the form of initial 

parameters. Laplace transforms of unknown quantities are rational functions with a denominator which 

has a form of a quartic polynomial. Performing partial fraction decompositions of these rational functions, 

we must distinguish among three different cases:  
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,  
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,  
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.  

In order to simplify expressions of the general solution, we introduce denotation:  
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For example, when  <
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, the general shape of the rotation of the cross section may be 

expressed as follows: 
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where Heaviside(x-a) is the denotation used in MAPLE for Heaviside’s unit step function moved into the 

point x = a. 

5. Conclusions 

Contribution of this paper to modal analysis of Timoshenko beam is that the mathematical model for free 

transverse vibration, i.e. Eqs. (3) to (6), holds true also for the discontinuous shear force, the 

discontinuous bending moment and the discontinuous rotation of the cross section. 

Discontinuities in shear force are supposed to be owing to idealized concentrated supports or inertia 

masses situated between ends of the beam. Likewise, discontinuities in bending moment are assumed to 

be due to idealized concentrated moments of inertia situated between ends of the beam. On the contrary, 

discontinuities in rotation of the cross section are caused by real hinges connecting beam segments. Jump 

discontinuities in unknown dependently variable quantities have been expressed in corresponding 

distributional derivatives (3)-(5), where the singular distribution Dirac(x), which is usually denoted as 

δ(x), is always moved into the point with the discontinuity mentioned, and multiplied by a magnitude of 

the discontinuity.  

To be able to find natural frequencies and modal shapes of Timoshenko beam analytically with 

discontinuities mentioned, we have derived Eqs. (8) to (11) for shapes of the shear force, the bending 

moment, the rotation of the cross section and the deflection. Using the Laplace transform method with 

MAPLE software system, we have computed general solution to the system containing integration 

constants in the form of initial parameters. Computing limits (7), we can express the unknown amplitudes 

of the deflection, Wi, and rotation of the cross section, Φi, as functions of initial parameters. In order to 

determine the unknown initial parameters, we must establish four boundary conditions. So as to 

determine the unknown reactions at concentrated supports between ends of the beam, and amplitudes of 

discontinuities in the rotation of the cross section at hinges connecting beam segments, we must establish 

corresponding deformation conditions at these points. These deformation and boundary conditions create 

all together a homogeneous system of linear equations. The condition of the nontrivial solution to this 

system is the frequency equation of the beam with discontinuities assumed. 
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