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Summary: The prediction of groundwater flow is strongly influenced by the soil
permeability generally varying within the space. Determination of the spatial dis-
tribution of the permeability is, however, unfeasible and thus the relevant uncertain-
ties should be taken into account. One possibility is to describe the soil permeability
by a random field. The present contribution is devoted to propagation of these un-
certainties in permeability into probabilistic description of groundwater flow.

1. Introduction

This paper is focused on the modeling of uncertainties in material properties and investigates
the influence of such uncertainties on groundwater flow, described by a steady-state diffusion
equation. As a simple example, consider the following (deterministic) elliptic partial differential
equation (PDE) for the hydraulic head u(x):

−∇ · (κ(x)∇u(x)) = f(x), x ∈ D, (1)
u(x) = g(x), x ∈ ∂D, (2)

where κ(x) is the soil permeability (hydraulic conductivity), f(x) is a given source or sink in-
side the region D (D ⊂ R2) and g(x) are prescribed flows and hydraulic heads on the boundary
∂D.

Consider now a system involving material variability. If the input parameter is defined as a
random field, the system would be governed by a set of stochastic partial differential equations
(SPDE) and the corresponding responses would also be random vectors of nodal displacements,
see (Keese and Matthies, 2005; Kučerová and Sýkora, 2013). Let us formulate this for the
soil permeability κ(x). A random model is obtained by defining κ(x) for each x ∈ D as a
random variable κ(x) : Ω → R on a suitable probability space (Ω ,S ,P). As a consequence,
κ : D × Ω → R is a random field, where any elementary event ω ∈ Ω gives a realization
κ(·, ω) : D → R of the soil permeability. Alternatively, κ(x, ω) can be seen as a collection
of real-valued random variables indexed by x ∈ D, see (Keese and Matthies, 2005; Keese,
2004; Eiermann et al., 2007). Introduction of random system parameters into Eqs. (1) and (2)
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we obtain the stochastic partial differential equation:

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω), x ∈ D, (3)
u(x, ω) = g(x, ω), x ∈ ∂D. (4)

In order to solve this stochastic partial differential equation and obtain the approximate re-
sponses of the system, Monte Carlo (MC) method is usually used. The effort of performing
Monte Carlo simulations is high, and hence alternative techniques have been developed, such
as the spectral stochastic finite element method (SSFEM). The interested reader is referred to
(Keese and Matthies, 2005; Kučerová et al., 2012; Chen and Soares, 2008) for further informa-
tion.

2. Discretization of random fields

Assuming the random field κ(x, ω) to be Gaussian, it is defined by its mean

µκ(x) = E[κ(x, ω)] =

∫
Ω

κ(x, ω)P(dω) (5)

and its covariance

Cκ(x, x
′) = E[(κ(x, ω)− µκ(x))(κ(x′, ω)− µκ(x′))]

=

∫
Ω

(κ(x, ω)− µκ(x))(κ(x′, ω)− µκ(x′))P(dω) . (6)

In a computational setting, the random field and the numerical model must be discretized.
The most common approach for achieving this is the Karhunen-Loéve expansion (KLE), see (Eier-
mann et al., 2007). KLE is an extremely useful tool for the concise representation of the stochas-
tic processes. Based on the spectral decomposition of covariance function Cκ(x, x′) and the
orthogonality of eigenfunctions ψi, the random field κ(x, ω) can be written as

q(x, ω) = µκ(x) +
∞∑
i=0

√
ςiξi(ω)ψi(x), (7)

where ξ(ω) = (. . . , ξi(ω), . . .)T is a set of uncorrelated random variables of zero mean and
unit variance. The spatial KLE functions ψi(x) are the eigenfunctions of the Fredholm integral
equation with the covariance function as the integral kernel:∫

D

Cκ(x, x
′)ψi(x)dx′ = ςiψi(x) , (8)

where ςi are positive eigenvalues ordered in a descending order.
Since the covariance is symmetric and positive definite, it can be expanded in the series

Cκ(x, x
′) =

∞∑
i=1

ςiψi(x)ψi(x
′) . (9)

However, computing the eigenfunctions analytically is usually not feasible. Therefore, one
discretizes the covariance spatially according to chosen grid points (usually corresponding to
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realization of hydraulic field κ(x) computed using all 1195 eigenmodes and its approximation
κ̂(x) computed using only first 100 eigenmodes.

(a) (b)

(c) (d)

Figure 2: Examples of eigenvectors ψi, (a) i = 1, (b) i = 10, (c) i = 100, (d) i = 1195

(a) (b)

Figure 3: The hydraulic conductivity field computed using, (a) only first 100 eigenmodes, (b)
all 1195 eigenmodes

In order to choose an appropriate number of eigenmodes, a relative pointwise error of input
fields averaged over all finite elements and over independent random realizations was computed.
A similar error can be also computed in terms of response fields. These errors as a function of
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the number of eigenmodes M involved in the description of input fields are depicted in Fig. 4.
It can be seen again that the error in description of input fields is decreasing slowly, while the
error in the response fields descends much faster due to the smoothing effect of the numerical
model.

(a) (b)

Figure 4: Relative mean point-wise error [%], (a) of the input hydraulic conductivity field and
(b) of the overall responses induced by KLE approximation based on M eigenmodes

4. Conclusion

This paper presents the numerical study of groundwater flow in random media under steady-
state conditions. For a sake of simplicity, the random fields are assumed to be Gaussian.

All numerical simulations were performed using Monte Carlo technique, which is very com-
putationally exhaustive procedure. The spectral stochastic finite element method is promising
alternative. It is under current investigation and will be presented elsewhere.
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