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Summary: Damage mechanics is a suitable framework for description of the be-
havior of quasibrittle materials. However, the classical theory fails after the loss
of ellipticity of the governing differential equation. From the numerical point of
view, loss of ellipticity is manifested by a pathological dependence of the results
on the size and orientation of finite elements. To avoid such an undesired behav-
ior, the model can be regularized by an implicit gradient formulation. However,
this enhancement in its usual form leads to excessive energy dissipation near non-
convex boundaries (e.g. notches and obtuse corners). This paper describes two
modifications of the standard gradient-enhanced damage formulation and their im-
plementation into a finite element code. The difference between the formulations is
illustrated by a numerical example.

1. Introduction

Realistic description of the mechanical behavior of quasibrittle materials such as concrete re-
quires constitutive laws with softening. From the physical point of view, softening can be
attributed to the propagation and coalescence of defects, e.g. voids and cracks. It is well known
that softening may lead to localization of inelastic strain into narrow process zones. For tradi-
tional models formulated within the classical framework of continuum mechanics, such zones
have an arbitrarily small thickness, and failure can occur at extremely low energy dissipation,
which is not realistic. The mathematical model becomes ill-posed and the numerical solu-
tions suffer by pathological sensitivity to the discretization parameter, e.g. to the size of finite
elements. It is therefore necessary to introduce special enhancements acting as localization
limiters.

This paper deals with the implicit gradient enhancement. Within this framework, the math-
ematical model remains well-posed and numerical results are mesh objective. However, the
standard implicit gradient enhancement may result in excessive energy dissipation near non-
convex boundaries, and its modifications are necessary to reduce this spurious effect (Bažant et
al., 2010; Giry et al., 2011).

The paper is organised as follows. In Section 2 the classical isotropic damage mechan-
ics is outlined. In Section 3 the implicit gradient-enhanced formulation is described and its
distance-based and stress-based modifications to reduce spurious dissipation near boundaries
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are introduced. The links to the micromorphic formulation are discussed. In Section 4, im-
plementation of the regularized damage model into a finite element code is described. Finally,
the performance of the modified regularized models is assessed by simulations of a three-point
bending test of concrete specimens with a sharp notch and a V-shaped notch.

2. Damage mechanics

In this section, we consider a family of simple isotropic damage models with one scalar damage
variable ω, driven by the equivalent strain. The basic equations consist of the stress-strain law

σ = (1− ω) σ̄ = (1− ω)De : ε (1)

damage law
ω = g(κ) (2)

and loading-unloading conditions

f(ε, κ) ≤ 0 κ̇ ≥ 0 κ̇f(ε, κ) = 0 (3)

with the damage loading function f defined as

f(ε, κ) = ε̃(ε)− κ (4)

In the above equations, σ is the stress tensor, σ̄ is the effective stress tensor, ω is a scalar
damage variable, De is the elastic stiffness tensor, ε is the small-strain tensor, g is the damage
evolution function, ε̃ is a scalar measure of the strain level called the equivalent strain, and κ is
an internal variable which corresponds to the maximum level of equivalent strain ever reached
in the previous history of the material. The choice of the specific expression for the equivalent
strain directly affects the shape of the elastic domain in the strain space (and, as a consequence,
also in the stress space).

3. Implicit gradient regularization

In the previous section, a simple local damage model has been introduced. Here we focus on its
regularization by the implicit gradient formulation. Equations (2)–(4) are reformulated using
the nonlocal equivalent strain ε̄ and the corresponding history variable κ̄, which represents the
maximum level of the nonlocal equivalent strain. The equations are rewritten as

ω = g(κ̄) (5)

f(ε̄, κ̄) ≤ 0 ˙̄κ ≥ 0 ˙̄κf(ε̄, κ̄) = 0 (6)

f(ε̄, κ̄) = ε̄− κ̄ (7)

In the standard gradient-enhanced model, the nonlocal variable ε̄ is computed from a Helmholtz-
like differential equation

ε̄− l2∇2ε̄ = ε̃ (8)

with the homogeneous Neumann boundary condition

n ·∇ε̄ = 0 (9)
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applied on the entire boundary S of the spatial domain V occupied by the body of interest.
In the equations above, l is the characteristic length (related to the size and spacing of major
heterogeneities in the material microstructure), ε̃ is the local equivalent strain computed directly
from the strain tensor ε, ∇ is the gradient operator,∇2 = ∇ ·∇ is the Laplace operator, and n
is the outward unit normal to the boundary.

The implicit gradient formulation acts as a proper regularization technique and overcomes
problems with fracture at extremely low dissipation caused by localization of damage to a single
layer of finite elements; however, in its standard form it leads to excessive energy dissipation
close to non-convex boundaries. This problem may be alleviated by a suitable modification.
Here we consider a generalized version of equation (8), which permits more flexibility and can
emphasize the influence of the distribution of the local field ε̃ in certain directions. For this
purpose, the scalar characteristic length l is replaced by a second-order tensor L, and (8) is
generalized to

ε̄−∇ ·
(
L2 · ∇ε̄

)
= ε̃ (10)

3.1. Distance-based and stress-based modifications
Two modifications considered here are inspired by the work of Xenos et al. (2013) who dealt
with an integral nonlocal formulation (in contrast to the present implicit gradient formulation)
and constructed special weight functions for nonlocal averaging, in the spirit of Bažant et al.
(2010) and Giry et al. (2011). Here we reformulate this idea in the implicit gradient setting.

First we consider the so-called distance-based modification. In this formulation, the scalar
internal length parameter l is considered as variable in space and is adjusted near boundaries by
a dimensionless reduction factor

γd =


1, if d(x) ≥ tl0

β +
1− β
tl0

d(x), if d(x) < tl0

(11)

where t and β are dimensionless model parameters and d(x) denotes the distance of point x
from the specimen boundary. The position-dependent characteristic length is then

l = γdl0 (12)

where l0 is a constant that corresponds to the characteristic length far from the boundaries.
In the stress-based approach, the orientation and intensity of nonlocal interactions are mod-

ified according to the stress state. The second-order internal length tensor L is introduced.
Under plane stress, it can be represented by the spectral decomposition

L = l1n1 ⊗ n1 + l2n2 ⊗ n2 (13)

where n1 and n2 are the unit eigenvectors of the stress tensor associated with the larger and
smaller principal stresses, respectively, l1 = l0 is constant, and l2 = γsl0 with

γs =


1 if σ̂1 ≤ 0

(
β + (1− β)

〈σ̂2〉2

σ̂2
1

)
if σ̂1 > 0

(14)
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The principal stresses σ̂1 and σ̂2 (eigenvalues of the stress tensor) are ordered such that σ̂1 ≥
σ̂2. They are equal to the principal effective stresses σ̄1 and σ̄2 multiplied by the same factor
1 − ω, and so it is possible to replace in (14) σ̂1 by σ̄1 and σ̂2 by σ̄2. The advantage is that the
principal effective stresses can be directly computed from the strains, without knowing the value
of the damage variable ω. In (14), β is a dimensionless model parameter and 〈·〉 are MacAuley
brackets (denoting the positive part).

3.2. Micromorphic formulation
The implicit gradient damage formulation lacks a solid thermodynamic basis. For this reason
we demonstrate the similarity of the implicit gradient formulation to the thermodynamically
consistent micromorphic approach; see Forest (2009) for a general overview. We start from the
principle of virtual power

P int = P ext (15)

where P int is the (extended) virtual power of internal forces and P ext is the virtual power of
external forces. The virtual power of internal forces is extended by terms that represent the
contribution of the so-called micromorphic variable (here the nonlocal equivalent strain) and its
gradient. Therefore, the density of internal virtual power is defined as

pint = σ : ε̇∗ + s ˙̄ε∗ + s : ∇ ˙̄ε∗ (16)

where ε̇∗ is the virtual strain rate, ˙̄ε∗ is the virtual equivalent strain rate, and s and s are gener-
alized stresses conjugated to the micromorphic variable ε̄ and its gradient ∇ε̄. Integrating the
power density (16), we obtain the internal virtual power

P int =

∫
V

pintdV (17)

In general, the virtual power of external forces could also be enhanced by terms that correspond
to generalized body forces and generalized tractions, but in the present context it is sufficient to
use the standard expression

P ext =

∫
St

t · u̇∗dS (18)

where t are the prescribed tractions on the boundary, u̇∗ is the virtual displacement rate, and
the (standard) body forces are considered as negligible. St is the free (unsupported) part of the
boundary. On the supported part of the boundary, Su, the virtual displacement rate u̇∗ vanishes
and thus the unknown reactions do not contribute to the virtual power in (18).

The virtual work equality (15) combined with the kinematic equations and kinematic bound-
ary conditions leads to the standard and generalized equilibrium equations

∇ · σ = 0 in V (19)

∇ · s = s in V (20)

and boundary conditions
σ · n = t on St (21)

s · n = 0 on S (22)
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To get the state laws governing the generalized stresses, we introduce the Helmholtz free
energy density enhanced by additional micromorphic terms,

Ψ = 1
2
(1− ω)ε : De : ε+ 1

2
A (ε̃− ε̄)2 +∇ε̄ ·C · ∇ε̄ (23)

with a new scalar parameter A and second-order tensorial parameter C. The dissipation in-
equality (for isothermal processes)

D = pint − Ψ̇ ≥ 0 (24)

combined with (16) and (23) then yields

D =

(
σ − ∂Ψ

∂ε

)
: ε̇+

(
s− ∂Ψ

∂ε̄

)
˙̄ε+

(
s− ∂Ψ

∂∇ε̄

)
· ε̇− ∂Ψ

∂ω
ω̇ ≥ 0 (25)

Assuming that the terms related to micromorphic variables are non-dissipative, we get the state
laws

s =
∂Ψ

∂ε̄
= −A(ε̃− ε̄) (26)

s =
∂Ψ

∂∇ε̄
= C · ∇ε̄ (27)

σ =
∂Ψ

∂ε
= (1− ω)De : ε+ A (ε̃− ε̄) ∂ε̃

∂ε
(28)

and the reduced dissipation inequality

−∂Ψ

∂ω
ω̇ =

ω̇

2
ε : De : ε ≥ 0 (29)

Since the stiffness tensor is positive definite and damage can only grow, condition (29) is always
satisfied and the model is consistent with the second law of thermodynamics.

Substituting (26)–(27) into (20) and taking into account that A is a constant, we arrive at

ε̄−∇ ·
(

1

A
C · ∇ε̄

)
= ε̃ (30)

This corresponds to the implicit gradient equation in its generalized form (10) with L2 = C/A.
If tensor L is constant in time and depends only on the spatial variable, the equivalence is per-
fect. However, for the stress-based formulation L changes in time depending on the evolution
of stress, which is not considered by the micromorphic model.

Substituting (27) into (22), we get the boundary condition

(C · ∇ε̄) · n = 0 (31)

For the standard implicit gradient model as well as for its distance-based modification, C is a
multiple of the unit second-order tensor and condition (31) is equivalent to the homogeneous
Neumann boundary condition (9). For a general tensor C, these conditions would differ.

In summary, the boundary value problem defining the nonlocal variable according to the
standard and distance-based implicit gradient formulations can be derived from the micromor-
phic formulation using a thermodynamically consistent approach. However, the stress-strain
law of the micromorphic formulation is different, due to the second term on the right-hand side
of (28).
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4. Implementation of implicit gradient model

The implicit gradient formulation, including its distance-based and stress-based modifications,
has been implemented into OOFEM (Patzák and Bittnar, 2001; Patzák, 2012), an open-source
object-oriented finite element platform available under the GNU license. The implementation is
based on mixed finite elements. We start from the strong form of the set of governing differential
equations

∇ · σ = 0 (32)
ε̄−∇ ·

(
L2 · ∇ε̄

)
= ε̃ (33)

After multiplication by suitable test functions ξ and φ, integration over V and application of the
Gauss theorem, eploiting boundary conditions (21) and (31) with C replaced by L2, equations
(32)–(33) are converted to the weak form∫

V

σ : ∇sξ dV =

∫
St

t · ξ dS (34)∫
V

(
ε̄φ+∇ε̄ ·L2 · ∇φ− ε̃φ

)
dV = 0 (35)

The displacements and the nonlocal equivalent strain are approximated at the element level by

u = Nd ε̄ = N ε̄dε̄ (36)

where N and N ε̄ are matrices containing the shape functions and d and dε̄ are vectors with
the corresponding degrees of freedom (nodal displacements and nodal values of the nonlocal
equivalent strain). After conversion of (34)–(35) to the engineering (matrix) notation and dis-
cretization based on approximations (36) and on analogous approximations of the test functions,
we obtain the set of nonlinear algebraic equations

f int(d,dε̄) = f ext (37)
φint(d,dε̄) = 0 (38)

in which
f int =

∫
V

BTσ dV (39)

and
f ext =

∫
St

NT t dS (40)

are the standard internal and external forces, and

φint =

∫
V

(NT
ε̄N ε̄dε̄ +BT

ε̄L
2Bε̄dε̄ − ε̃NT

ε̄ ) dV (41)

are the enhanced internal forces. In the equations above, B and Bε̄ are matrices containing
derivatives of the shape functions.

The set of nonlinear equations (37)–(38) is solved by the Newton-Raphson iteration scheme.
This numerical method requires a tangent matrix, which is obtained by differentiation of the
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generalized internal force vector with respect to the nodal unknowns:

K =


∂f int
∂d

∂f int
∂dε̄

∂φint
∂d

∂φint
∂dε̄

 (42)

For the standard and distance-based approaches, individual blocks of the generalized stiffness
matrix are given by

∂f int
∂d

=

∫
V

(1− ω)BTDeB dV
∂f int
∂dε̄

= −
∫
V

dg
dκ̄

dκ̄
dε̄
BT σ̄N ε̄ dV

∂φint
∂d

= −
∫
V

NT
ε̄

∂ε̃

∂ε
B dV

∂φint
∂dε̄

=

∫
V

(
NT

ε̄N ε̄ + l2BT
ε̄Bε̄

)
dV

(43)

For the stress-based approach, the internal length matrixL2 depends on the effective stress state
and varies during the simulation. In the derivation of the generalized stiffness, the derivatives
of L2 with respect to the displacement degrees of the freedom have to be taken into account.
This is easier to handle in subscript notation. The derivative of the i-th component of φint with
respect to the j-th component of d is given by

∂(φint)i
∂dj

=

∫
V

∑
n,m

B ε̄
ni

∂L2
nm

∂dj
Gε̄
mdV −

∫
V

∑
k

N ε̄
i

∂ε̃

∂εk
BkjdV (44)

where Gε̄
m =

∑
pB

ε̄
mpd

ε̄
p. The sums are written explicitly because the summation subscripts do

not refer to tensorial components but to the components of matrices. For instance, εk is the k-th
component of the column matrix of engineering strains, which (under plane stress) contains
two normal strains and one shear strain (with the meaning of the shear angle). To compute the
derivatives of the internal length tensor L2, we exploit its spectral form

L2 = l21n1 ⊗ n1 + l22n2 ⊗ n2 (45)

where l1 = l0 is constant and l2 = γsl0 depends on the effective principal stresses σ̂1 and σ̂2.
Equation (45) can thus be rewritten as

L2 = l20n1 ⊗ n1 + γ2
s l

2
0n2 ⊗ n2 = l20 (I − n2 ⊗ n2) + γ2

s l
2
0n2 ⊗ n2

= l20
[
I +

(
γ2
s − 1

)
n2 ⊗ n2

] (46)

Recall that n1 and n2 are the unit eigenvectors of the stress tensor (which, for the present
isotropic damage model, coincide with the eigenvectors of the strain tensor). Based on the
chain rule, the derivative of L2

nm with respect to dj is computed as

∂L2
nm

∂dj
=
∑
k,q

∂L2
nm

∂σk

∂σk
∂εq

∂εq
∂dj

(47)

where
∂σk
∂εq

= (1− ω)De
kq (48)
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and
∂εq
∂dj

= Bqj (49)

are components of the material secant stiffness matrix Ds = (1 − ω)De and of the strain-
displacement matrixB, and

∂L2
nm

∂σk
= 2γsl

2
0

(
∂γs
∂σ̂1

∂σ̂1

∂σk
+
∂γs
∂σ̂2

∂σ̂2

∂σk

)
n2nn2m+

+ l20(γ2
s − 1)

(
∂n2n

∂σk
n2m +

n2n∂n2m

∂σk

) (50)

The derivatives of γs with respect to the principal stresses easily follow from (14):

∂γs
∂σ̂1

=


2(β − 1)

σ̂2
2

σ̂3
1

if σ̂1 > 0 and σ̂2 > 0

0 otherwise

(51)

∂γs
∂σ̂2

=


2(1− β)

σ̂2

σ̂2
1

if σ̂1 > 0 and σ̂2 > 0

0 otherwise

(52)

In tensorial notation, the derivatives of the principal stresses with respect to the stress tensor are
∂σ̂1/∂σ = n1 ⊗n1 and ∂σ̂2/∂σ = n2 ⊗n2. In the engineering notation, this can be rewritten
as

∂σ̂1

∂σk
= N11

k (53)

∂σ̂2

∂σk
= N22

k (54)

where

N ij
k =


ni1nj1 if k = 1

ni2nj2 if k = 2

ni1nj2 if k = 3

(55)

The formula for the derivative of an eigenvector with respect to the tensor can be found e.g. in
Šilhavý (1997):

∂n2n

∂σk
=
n1n (N12

k +N21
k )

2(σ̂2 − σ̂1)
(56)

Combining equations (47)–(56), we can express the first integrand in (44) as∑
n,m

B ε̄
ni

∂L2
nm

∂dj
Gε̄
m =

∑
n,k,m,q

(1− ω)B ε̄
ni

[
P 1
kM

22
nm + P 2

k

(
M12

nm +M21
nm

)]
De
kqBqjG

ε̄
m (57)

and the complete expression in (44) can then be rewritten in the compact matrix form as

∂φint
∂d

=

∫
V

[
BT
ε̄M

22Gε̄P
1DsB +BT

ε̄

(
M 12 +M 21

)
Gε̄P

2DsB −NT
ε̄

∂ε̃

∂ε
B

]
dV (58)
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Figure 1: Beam geometry and loading

where
M ij = nin

T
j (59)

P 1
k = 2γsl

2
0

(
∂γs
∂σ̂1

N11
k +

∂γs
∂σ̂2

N22
k

)
(60)

P 2
k =

l20(γ2
s − 1)

2(σ̂2 − σ̂1)

(
N12
k +N21

k

)
(61)

5. Numerical examples

In this section we illustrate the implicit gradient formulation and its two modifications by ex-
amples of a three-point bending test of a V-notched specimen and of a specimen with an initial
crack (sharp notch); see Figure 1 for problem setting. The results are compared to those ob-
tained with a lattice model; see Grassl and Jirásek (2010) for the description of the lattice model
and Xenos et al. (2013) for comparison of the lattice model with an integral nonlocal damage
model.

In the present simulations, the equivalent strain is defined by the expression

ε̃ =
1

E
max
I
σ̄I (62)

based on the Rankine condition of maximum principal stress. The damage law is taken accord-
ing to Grassl and Jirásek (2010) as

g(κ) =



1− exp

(
− 1

md

(
md

εmax

)md
)

1− ε3

κ
exp

 κ− ε1

εf

[
1 + κ−ε1

ε2

]n


(63)

The independent model parameters are E = Young’s modulus, ν = Poisson’s ratio, ft =
uniaxial tensile strength, εmax = strain at the peak of the uniaxial tensile stress-strain curve, and
parameters ε1, ε2 and n affecting the shape of the softening part of the curve. The dependent
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Elastic parameters
E 29.6 GPa
ν 0.2

Parameters of damage law
ft 2.86 MPa
εmax 0.000198
ε1 0.00023
ε2 0.007
n 0.85
Nonlocal parameters
l 4 mm
t 1
β 0.35

Table 1: Material parameters

parameters are evaluated as

md =
1

ln (Eεmax/ft)
(64)

εf =
ε1

(ε1/εmax)
md − 1

(65)

ε3 = ε1 exp

(
− 1

md

(
ε1

εmax

)md
)

(66)

The values of material parameters have been taken from Xenos et al. (2013) and are summarized
in Tab. 1. In Grassl and Jirásek (2010), these parameters were calibrated by fitting the results of
simulations of the uniaxial tensile test using a meso-scale model. The same meso-scale model
was used by Xenos et al. (2013) in simulations of the bending test, which did not lead to any
excessive dissipation near the tip of a notch.

The present results are shown in the form of the load-displacement curves (Fig. 2) and cu-
mulated dissipated energy along the height of the beam (Figs. 3 and 4). The peak load and
dissipated energy of the meso-scale model are overestimated by the standard and also by the
modified models for both beam geometries. The distance-based formulation leads to a some-
what better agreement with the meso-scale model. The stress-based model provides slightly
better results for the beam with a sharp crack, while for the V-notched specimen the results
remain surprisingly close to the standard approach.

6. Conclusion

In this paper, a gradient-enhanced damage model and its two modifications have been described
and applied to the modelling of a three-point bending test with different geometries. For the
beam with a sharp notch, the distance-based and stress-based formulations reduce the dissipated
energy near the notch and the results are in a better agreement with the meso-scale model. For
the V-notched specimen the distance-based model is in a better agreement with the meso-scale

182



(a) (b)

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

lo
ad

 [
k
N

]

vertical displacement [mm]

Standard
Distance-based

Stress-based
Meso-scale

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

lo
ad

 [
k
N

]

vertical displacement [mm]

Standard
Distance-based

Stress-based
Meso-scale

Figure 2: Load-displacement curve: (a) V-notch, (b) sharp notch
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Figure 3: Dissipated energy: V-notched specimen

approach while the stress-based model provides no improvement as compared to the standard
formulation.

Further research will focus on the comparison of the computational efficiency of the pre-
sented modifications with the integral approach, on the influence of different equivalent strain
measures on the load-displacement curve and on the dissipated energy, and on the links between
the implicit gradient formulation and the thermodynamically consistent micromorphic model.
Furthermore, the distance-based and stress-based modification will be used with a damage-
plasticity model, which is more suitable for a realistic description of concrete failure in complex
situations.
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Jirásek, M., Rolshoven, S. & Grassl, P. 2004: Size effect on fracture energy induced by nonlo-
cality. International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 28,
653–670

Patzák, B. & Bittnar, Z. 2001: Design of object oriented finite element code. Advances in
Engineering Software, Vol. 32, 759–767

Patzák, B. 2012: OOFEM – an object-oriented simulation tool for advanced modeling of mate-
rials and structures. Acta Polytechnica, Vol. 52, 59–66
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