
MODELLING OF THE TURBOCHARGER VIBRATIONS

V. Zeman, Z. Hlaváč ∗

Abstract: The paper deals with derivation of the dynamical model of the turbochargers with rotor sup-
ported on the two floating ring bearings. The model respects the bearing forces acting upon the journals
and floating bearing rings by means of inner and outer oil-films. The gyroscopic effects, external and in-
ternal damping of the flexible rotor shaft and the rigid turbine and compressor wheels are respected. The
modal analysis and the Campbell diagram is used in the turbocharger linearized model to find the critical
speeds.
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1. Introduction

The automotive turbochargers work at very high rotor speeds. Therefore the turbocharger vibrations
caused by the rotor unbalance is fundamental phenomenon influencing a turbocharger operation. Con-
sider the very high-speed automotive turbocharger (Shäfer (2012)) including the flexible rotor shaft (R),
rigid turbine (T) and compressor (C) wheels and two cylindrical floating ring bearings (Ba, Bb) displayed
in Fig.1. The lateral-bending behaviour of the isotropic flexible rotor shafts with fixed rigid disks sup-
ported on non-isotropic bearings can be modelled by 1-D approach using the finite element method in a
fixed coordinate system (Krämer (1993), Genta (2005), Yamamoto & Ishida (2001)). The forces trans-
mitted by oil film bearings can be described for small displacements from static equilibrium position
by linearized stiffness and damping matrices depending on the angular rotor velocityω. Other external
and internal damping effects are neglected or are respected approximately. Mostly external vs. internal
damping was studied on the fundamental model with rotor mass concentrated in the disk without (Gash
& Pfützner (1975), Kr̈amer (1993)) or with gyroscopic effects (Muszińska (2005)). An internal and ex-
ternal damping impact on the stability of the rotors supported on two non-isotropic oil-film bearings was
investigated in the paper Zeman & Rendlová (2011). The finite element discretization of the turbocharger
rotors has been used for the undamped shaft (Šimek (2013)) or damped rotor (Genta (2005)) using the
transfer matrices method. In these works only stiffness and damping effects of one oil-film of bearings
was considered. The aim of this article is to present a generally accepted methodology for modelling of
the turbocharger rotor supported on two flexible non-isotropic oil-film floating ring bearings respecting
two separable oil-films of both bearings and external and internal rotor damping.
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Fig. 1: Computational model of the turbocharger rotor
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2. Discretization of the rotor shaft

Thefinite element method (FEM) is applied for a discretization of the flexible rotor shaft with rigid disks.
The motion equations can be written in the space of general coordinates

qR = [. . . , vi, wi, ϑi, ψi, . . .]
T , (1)
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Fig. 2: Prismatic shaft finite element

wherevi, wi are lateral andϑi, ψi angular shaft displacements in the nodal pointi in the inertial co-
ordinate systemX,Y, Z (Fig.2). The massM (e), gyroscopicωG(e) and stiffnessK(e) matrices of the
undamped prismatic shaft finite element (FE) between two adjacent nodal pointsi and i + 1 can be
derived using Lagrange’s approach from the identity

d

dt

(

∂E
(e)
k

∂q̇
(e)
Y Z

)

− ∂E
(e)
k

∂q
(e)
Y Z

+
∂E

(e)
p

∂q
(e)
Y Z

= M (e)q̈
(e)
Y Z + ωG(e)q̇

(e)
Y Z + K(e)q

(e)
Y Z , (2)

where shaft FE displacements are arranged into vector

q
(e)
Y Z = [vi, ψi, vi+1, ψi+1, wi, ϑi, wi+1, ϑi+1]

T . (3)

The FE matrices have structure (Byrtus et al. (2010))

M (e) = ρ

[

S−T
1 (AIΦ + JIΦ′)S−1

1 0

0 S−T
2 (AIΦ + JIΦ′)S−1

2

]

, (4)

G(e) = 2ρJ

[

0 S−T
1 IΦ′S−1

2

−S−T
2 IΦ′S−1

1 0

]

,K(e) = EJ

[

S−T
1 IΦ′′S−1

1 0

0 S−T
2 IΦ′′S−1

2

]

, (5)

where

IΦ =

∫ l

0
Φ

T (x)Φ(x)dx, IΦ′ =

∫ l

0
Φ

′T (x)Φ′(x)dx, IΦ′′ =

∫ l

0
Φ

′′T (x)Φ′′(x)dx,

Φ(x) = [1, x, x2, x3], S1,2 =









1 0 0 0
0 ±1 0 0
1 l l2 l3

0 ±1 ±2l ±3l2









, sign + forS1, sign − for S2 .

Every shaft element of lengthl is determined by mass densityρ, cross-section areaA, second moment
of cross-section areaJ and Young’s modulusE.

External damping forces, acting on the shaft FE, depend on the lateral absolute velocity. The
Rayleigh dissipation function in the inertial coordinate systemX,Y, Z is expressed as

R
(e)
E =

1

2

∫ l

0
[bEY v̇

2(x, t) + bEZẇ
2(x, t)]dx , (6)
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wherebEY andbEZ [kgm−1s−1] are coefficients of viscous damping per unit length of the shaft FE. Its
lateral deformations along the shaft FE are approximated polynomial in the form

v(x, t) = Φ(x)S−1
1 [vi, ψi, vi+1, ψi+1]

T , w(x, t) = Φ(x)S−1
2 [wi, ϑi, wi+1, ϑi+1]

T . (7)

Theexternal damping matrixB(e)
E results from identity

∂R
(e)
E

∂q̇
(e)
Y Z

= B
(e)
E q̇

(e)
Y Z , B

(e)
E =

[

bEY S−T
1 IΦS−1

1 0

0 bEZS−T
2 IΦS−1

2

]

. (8)

The normal stressσI generated by internal damping forces in axial direction can by expressed as
proportional to longitudinal strain velocity (Gash & Pfützner (1975)) in the formσI = bIEε̇x, wherebI
is coefficient of viscous internal (material) damping andεx is longitudinal unit deformation. The power
of the elementary damping force transmitted by surface element dAof cross-section isσIdAε̇xdx, where
ε̇xdx is strain rate. The corresponding Rayleigh dissipation function in rotating coordinate systemx, y, z

(x ≡ X) is expressed as

R
(e)
I =

1

2

∫ l

0

∫

A

bIEε̇dAdx . (9)

Providing small angular flexural cross-section displacements longitudinal unit deformation in arbitrary
point (η, ζ) of shaft cross-section is

εx = −η∂
2vr

∂x2
− ζ

∂2wr

∂x2
. (10)

The lateral shaft FE deformationsvr, wr in the rotating coordinate framex, y, z can be approximated
polynomial in the similar form to (7)

vr(x, t) = Φ(x)S−1
1 [vi,r, ψi,r, vi+1,r, ψi+1,r]

T , wr(x, t) = Φ(x)S−1
2 [wi,r, ϑi,r, wi+1,r, ϑi+1,r]

T ,

(11)
where lateral displacements marked with subscripti, r, i + 1, r correspond to nodal pointi, i + 1. The
angular flexural cross-section displacements around rotating axesy′ ‖ y, z′ ‖ z are markedϑr andψr

(Fig.2). Theinternal damping matrixB(e)
I results from identity

∂R
(e)
I

∂q̇yz

= B
(e)
I q̇(e)

yz , (12)

where shaft FE displacements in rotating coordinate system are arranged into vector

q(e)
yz = [vi,r, ψi,r, vi+1,r, ψi+1,r, wi,r, ϑi,r, wi+1,r, ϑi+1,r]

T . (13)

According to (9) up to (13) we get internal damping matrix in the rotating coordinate system

B
(e)
I = bIEJ

[

S−T
1 IΦ′′S−1

1 0

0 S−T
2 IΦ′′S−1

2

]

. (14)

We use the relations
q(e)

yz = T (t)q
(e)
Y Z , q̇(e)

yz = Ṫ (t)q
(e)
Y Z + T (t)q̇

(e)
Y Z (15)

between displacement and velocity vectors of shaft FE nodal points in the rotatingx, y, z and the inertial
X,Y, Z coordinate systems. The internal damping force vector(f

(e)
I )yz = −B

(e)
I q̇

(e)
yz on the right side

of the shaft FE motion equations is transformed to the inertial coordinate system

(f
(e)
I )Y Z = −T T (t)B

(e)
I q̇(e)

yz . (16)

According to (3) and (13) the transformation matrix is

T (t) =

[

E cosωt D sinωt
−D sinωt E cosωt

]

, D = diag[1,−1, 1,−1] (17)
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andE is unit matrix of order four. Using relations (15) and (16) we get

(f
(e)
I )Y Z = −T T (t)B

(e)
I T T q̇

(e)
Y Z − T T (t)B

(e)
I Ṫ (t)q

(e)
Y Z . (18)

It is possible to achieve relations

T T (t)B
(e)
I T (t) = B

(e)
I , T T (t)B

(e)
I Ṫ (t) = ωC(e) (19)

whereas matrix

ωC(e) = ωbIEJ

[

0 S−T
1 IΦ′′S−1

1 D

−DS−T
1 IΦ′′S−1

1 0

]

, (20)

for constant angular rotor velocityω is in time the constant antisymmetrical matrix. This so-called
circulatory matrix is linearly dependent on shaft angular velocity. Mathematical model of the shaft FE
bending vibration in inertial coordinate system according to (2), (8) and after translation of the vector
(f

(e)
I )Y Z expressed in (18) on the left side of the shaft FE motion equations has the form

M (e)q̈
(e)
Y Z + (B

(e)
E + B

(e)
I + ωG(e))q̇

(e)
Y Z + (K(e) + ωC(e))q

(e)
Y Z = 0 . (21)

It’s evident that external damping generates dissipative symmetrical damping matrixB
(e)
E and internal

damping generates dissipative symmetrical damping matrixB
(e)
I and antisymmetrical circulatory matrix

ωC(e).

3. Equations of rotor motion

The motion equations of the automotive turbocharger including the rotor shaft, turbine wheel, compres-
sor wheel, seal and thrust rings and two rotating floating ring bearings (Fig.1) will be derived in the
configuration space defined in the form

q = [qT
R, q

T
B]T = [. . . , vi, wi, ϑi, ψi, . . . , va, wa, vb, wb]

T , (22)

where vectorqR of dimension4N (N = number of rotor shaft nodal points) was defined in (1) and the
subvector

qB = [va, wa, vb, wb]
T (23)

expresses lateral displacements of the rigid bearing ringsRa (left) andRb (right) with respect to frame.
The matrices of the shaft element defined in equation (21) must be transformed in the form

Xe = P T X(e)P , X(e) = M (e),B
(e)
E ,B

(e)
I ,G(e),K(e),C(e) , (24)

where permutation matrixP corresponds to relation

q
(e)
Y Z = Pqe , qe = [vi, wi, ϑi, ψi, vi+1, wi+1, ϑi+1, ψi+1]

T .

The structure of the all global rotor shaft matrices without disks and bearings is given by following
scheme

XR =
∑

e

diag[0,Xe,0] , XR = MR,B
(E)
R ,B

(I)
R ,GR,KR,CR ∈ R4N,4N (25)

with block matricesXe determined in (24).

The mass, gyroscopic and external damping matrices of the axisymmetric rigid disk fast linked with
the rotor shaft in nodal pointi can be derived using Lagrange’s approach based on the kinetic energy and
dissipation function. The kinetic energy of the disk includes of the lateral and rotational parts

E
(D)
k =

1

2
m[(v̇i − aψ̇i)

2 + (ẇ + aϑ̇i)
2] +

1

2
I0(ω + ϑ̇iψi)

2 +
1

2
I(ϑ̇2

i + ψ̇2
i ) , (26)
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wherem is the mass,a is the distance of the disk mass center from nodal pointi (see Fig.1) andI, I0 are
the transverse and polar mass inertia moments. The disk dissipation function is

R(D) =
1

2
bl(v̇

2
i + ẇ2

i ) +
1

2
bc(ϑ̇

2
i + ψ̇2

i ) , (27)

wherebl, bc arelateral and circulant damping coefficients, respectively. The massMD, external damping
BD and gyroscopicωGD matrices of the balanced disk follow from identity

d

dt

(

∂E
(D)
k

∂q̇i

)

− ∂E
(D)
k

∂qi

+
∂R(D)

∂q̇i

= MDq̈i + (BD + ωGD)q̇i , (28)

whereqi = [vi, wi, ϑi, ψi]
T is vector of the rotor shaft nodal points displacements. Substituting Eqs.

(26) and (27) into identity (28) we get the disk matrices

MD =









m 0 0 −ma
0 m ma 0
0 ma I +ma2 0

−ma 0 0 I +ma2









, GD =









0 0 0 0
0 0 0 0
0 0 0 I0
0 0 −I0 0









, (29)

BD = diag[bl, bl, bc, bc] .

The mass, external damping and gyroscopic matrices of the rotor shaft with disks (turbine and compres-
sor wheels, seal and trust rings) have structure

XR =
∑

e

Xe +
∑

D

XD , XR = MR,B
(E)
R ,GR , XD = MD,BD,GD , (30)

where the FE matrices (24) and the disk matrices (29) are localized on positions corresponding to cou-
pling shaft nodal points displacements.

In order to reduce the bearing friction, the high-speed turbocharger is supported on the rotating
floating ring bearings having the inner (I) and outer (O) oil films (Fig.3). We consider the rotor shaft
rotation with constant angular velocityω in the opposite direction aroundX axis. Using Lagrange’s
approach we derive the mass matrix of the rotating floating ring bearings. The kinetic energy of both
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rings,on condition lateral ring vibrations is

E
(B)
k =

1

2
ma(v̇

2
a + ẇ2

a) +
1

2
mb(v̇

2
b + ẇ2

b ) , (31)
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wherema,mb arering masses. The corresponding bearing mass matrix in the configuration space defined
in (23) follows from identity

∂E
(B)
k

∂q̇B

= MB q̇B ⇒ MB = diag[ma,ma,mb,mb] . (32)

The bearing forcesF (I)
r , F (I)

t andF (O)
r , F (O)

t (see Fig.3) are based on the corresponding rotating coor-
dinate system (Kr̈amer (1993))rJ , tJ andrR, tR of the journal (J) and ring(R). Therefore, the coordinate
transformation from the rotating to inertial coordinate systemY, Z is necessary for the formulation of
the motion equations
[

F
(I)
Y

F
(I)
Z

]

=

[

sin δJ cos δJ
cos δJ − sin δJ

]

[

F
(I)
r

F
(I)
t

]

,

[

F
(O)
Y

F
(O)
Z

]

=

[

sin δR cos δR
cos δR − sin δR

]

[

F
(O)
r

F
(O)
t

]

, (33)

whereδJ , δR are angular positions of the journal and ring, respectively. Bearing force components in the
rotating coordinates depend on theεJ , ε̇J , δ̇J , ω − ωR andεR, ε̇R, δ̇R, ωR nonlinearly (Kr̈amer (1993),
Sḧafer (2012)), whereεJ , εR are the journal and ring relative eccentricities andω, ωR are the angular
velocities of the rotor (journal) and bearing ring.

In case of linear rotordynamics the bearing forcesF
(I)
r , F (I)

t andF (O)
r , F (O)

t are linearized in the
neighbourhood of the static equilibrium position. In case of the floating ring bearings the linearized
forces are
[

F
(I)
Y

F
(I)
Z

]

=

[

F
(I)
0,Y

F
(I)
0,Z

]

−
[

kY Y (ω) kY Z(ω)
kZY (ω) kZZ(ω)

][

v̄J − v̄R

w̄J − w̄R

]

−
[

bY Y (ω) bY Z(ω)
bZY (ω) bZZ(ω)

][

˙̄vJ − ˙̄vR

˙̄wJ − ˙̄wR

]

,

(34)
[

F
(O)
Y

F
(O)
Z

]

=

[

F
(O)
0,Y

F
(O)
0,Z

]

−
[

kY Y (ω) kY Z(ω)
kZY (ω) kZZ(ω)

] [

v̄R

w̄R

]

−
[

bY Y (ω) bY Z(ω)
bZY (ω) bZZ(ω)

] [

˙̄vR

˙̄wR

]

, (35)

wherev̄J , w̄J andv̄R, w̄R are displacements of the journal and ring centres from the static equilibrium
position resulted from static load of the journals and bearing rings.

The bearing oil stiffness and damping coefficients in Eqs. (34) and (35) can be in the first approxi-
mation expressed depending on relative journal speed with respect to bearing ringω−ωR and on bearing
ring speedωR. So-called the ring speed ratioRSR = ωR

ω
at the steady state condition depends on dy-

namic viscosity of the inner and outer oil-films, geometrical parameters of the bearing ring and inner
and outer radial bearing clearance (Shäfer (2012)). As a result of specific ring speed ratio in steady state
conditions (constantω) the stiffness and damping matrices of the inner and outer oil-films in Eqs. (34)
and (35) depend onω. We describe them asK(I)

x (ω), B(I)
x (ω) for inner oil-film andK

(O)
x (ω), B(O)

x (ω)
for outer oil-film of the left (x= a) and right (x= b) bearings. The changes of the bearing forces
relating to small displacements and velocities of the rotor from static equilibrium positions, expressed
by the second and the third components in Eqs. (34) and (35), in the global coordinate system defined in
(22) can be expressed in the matrix form

∆fB =























































...

−∆F
(I)
Y,a

−∆F
(I)
Z,a

...

−∆F
(I)
Y,b

−∆F
(I)
Z,b

...
−−−

∆F
(I)
Y,a − ∆F

(O)
Y,a

∆F
(I)
Z,a − ∆F

(O)
Z,a

∆F
(I)
Y,b − ∆F

(O)
Y,b

∆F
(I)
Z,b − ∆F

(O)
Z,b























































= −KB(ω)

[

q̄R

q̄B

]

− BB(ω)

[

˙̄qR
˙̄qB

]

, (36)
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whereq̄R, q̄B arevectors of rotor shaft and bearing rings displacements from the static equilibrium posi-
tion. According to (34) and (35) the stiffness and damping matrices of the two separated oil-films of both
bearings are localized in global matrices according to vectorsq̄Jx

= [v̄Jx
, w̄Jx

]T , q̄Rx
= [v̄Rx

, w̄Rx
]T ,

x = a, b as follows

KB(ω) =











K
(I)
a −K

(I)
a

K
(I)
b −K

(I)
b

−K
(I)
a K

(I)
a + K

(O)
a

−K
(I)
b K

(I)
b + K

(O)
b











}q̄Ja

}q̄Jb

}q̄Ra

}q̄Rb

; BB(ω) ∼ KB(ω) . (37)

The linearized motion equations of the turbochargers (Fig.1), according to (30), (32) and (36) can be
written as

[

MR 0

0 MB

] [

¨̄qR
¨̄qB

]

+

([

B
(E)
R + B

(I)
R − ωGR 0

0 0

]

+ BB(ω)

)[

˙̄qR
˙̄qB

]

+

+

([

KR − ωCR 0

0 0

]

+ KB(ω)

)[

q̄R

q̄B

]

=

[

fR(t)
0

]

, (38)

wherefR(t) is vector of the unbalance of disks (turbine and compressor wheels).

4. Application

The homogenous motion equations (38) (forfR(t) = 0) was applied on eigenvalues calculation of the
small automotive turbocharger with rotor mass 0.1[kg]. The rotor discretized into 13 nodes (Fig.1) is
supported on two short cylindrical floating ring bearings. The eigenvaluesλν are found by solving the
eigenvalue problem

(A − λE)u = 0 (39)

in state spaceu = [ ˙̄q, q̄]T , where non-symmetric system matrix is

A =

[

−M−1B(ω) −M−1K(ω)
E 0

]

(40)

andM , B(ω), K(ω) are global matrices of ordern = 56 in the motion equations (38). The bearing
stiffness and damping coefficients were calculated by means of bearing dimensionless stiffnessκij and
dampingβij coefficients (Kr̈amer (1993), Sḧafer (2012)) using the Reynolds lubrication equation for
radial cylindrical short bearings with the non-cavitating oil-films. The bearing forces were linearized
by using the Taylor’s series at the journal and bearing rings static equilibrium positions. The bearing
inner and outer oil-film coefficients of both bearings in equations (34) and (35) were calculated for the
static load at equilibrium, constant rotor speedω and ring speed ratio for the concrete oil and geomet-
rical bearing parameters. The dynamic oil viscosities of the lubricating inner and outer oil-films versus
temperature were calculated using the Cameron and Vogel equation (Shäfer (2012)).

The linearized mathematical model of the rotor has besides complex conjugate pairs of eigenval-
ues also even number of real values representing nonoscillatory overdamping modes. The real part of
two low-frequency eigenvalues is positive however their imaginary parts are much smaller than the ro-
tor speed. The Campbell diagram displayed at Fig.4 expresses the dependence of the eigenfrequencies
(imaginary parts of the complex eigenvalues) of the turbocharger on rotor speedn = 30ω

π
[rpm]. The crit-

ical speedsnk [rpm], where the eigenfrequencies cuts the synchronous excitation line, can be calculated
as roots of the nonlinear equation

n =
30

π
Im{λν(n)} . (41)

The calculated critical speeds in the investigated rotor speed rangen ∈ 〈24000, 240000〉 [rpm] are
given in Table 1. The rotor unbalance, caused by the static unbalance of the turbine and compressor
wheels with different angular phaseαC between unbalanced turbine and compressor wheel vectors, can
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Fig. 4: Campbell diagram of the turbocharger

Tab. 1: Critical speed of the rotor (B=backward, F=forward) without and with strengthening of the shaft
in area of the compressor wheel

Critical speeds
order without strengthening with strengthening

f [Hz] n[rpm] f [Hz] n[rpm]
1 677.38 40643 712.94 42776 B
2 875.20 52512 889.71 53377 F
3 2239.38 134363 2483.76 149026 B
4 3241.25 194475 4865.54 291932 B
5 3637.61 218257 5436.85 326211 F

be expressed in equations (38) by the complex form

f̃R(t) = f̃Reiωt ; f̃R = ω2
















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imT eT
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























. . . 1

. . . 2

. . . 3

. . . 4

. . . 33

. . . 34

; i =
√
−1 , (42)

wheremT eT , mCeC [kgm] are corresponding unbalances. According to (38) the vector of complex
amplitudes of the rotor steady state displacementsq̃ = [q̃R, q̃B] from static equilibrium position is

q̃ = [−Mω2 + iωB(ω) + K(ω)]−1

[

f̃R

0

]

. (43)

The turbine and compressor wheel amplitudes of lateral displacements versus rotor speed caused by
the permissible residual unbalance according to standard DIN-ISO 1940 (Shäfer (2012))mT eT =0.1
[gmm], mceC=0.05 [gmm] are displayed in Fig.5 and Fig.6. The unbalance generates resonances at
neighbourhood of critical speeds.
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Fig. 5: Amplitudes of turbine wheel centre lateral displacements for balancing quality grade G40 of the
DIN-ISO1940 andαC = 0

0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6

7

8

x 10
−6

rpm

v C
, w

C
 [m

]

Amplitudes of compressor wheel lateral displacements

 

 
v

C

w
C

Fig. 6: Amplitudes of compressor wheel centre lateral displacements for balancing quality grade G40 of
theDIN-ISO 1940 andαC = 0
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5. Conclusion

Thedescribed method was applied to investigate the complex eigenvalues, stability, unbalance response
and critical speeds of the well-balanced concrete turbocharger rotor supported on two floating ring bear-
ings. The computer program in MATLAB code makes it possible to analyse an influence of design and
operation parameters of the turbochargers on these phenomenons. The adjusted nonlinear mathematical
model including nonlinear characteristics of the bearing forces will be used for vibration analysis at the
large journals and floating bearing rings deflections.
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