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MODELLING OF THE TURBOCHARGER VIBRATIONS

V. Zeman, Z. Hlavac *

Abstract: The paper deals with derivation of the dynamical model of the turbochargers with rotor sup-
ported on the two floating ring bearings. The model respects the bearing forces acting upon the journals
and floating bearing rings by means of inner and outer oil-films. The gyroscopic effects, external and in-
ternal damping of the flexible rotor shaft and the rigid turbine and compressor wheels are respected. The
modal analysis and the Campbell diagram is used in the turbocharger linearized model to find the critical
speeds.
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1. Introduction

The automotive turbochargers work at very high rotor speeds. Therefore the turbocharger vibrations
caused by the rotor unbalance is fundamental phenomenon influencing a turbocharger operation. Con-
sider the very high-speed automotive turbocharge&f@h(2012)) including the flexible rotor shaft (R),

rigid turbine (T) and compressor (C) wheels and two cylindrical floating ring bearing8{} displayed

in Fig.1. The lateral-bending behaviour of the isotropic flexible rotor shafts with fixed rigid disks sup-
ported on non-isotropic bearings can be modelled by 1-D approach using the finite element method in a
fixed coordinate system (Emer (1993), Genta (2005), Yamamoto & Ishida (2001)). The forces trans-
mitted by oil film bearings can be described for small displacements from static equilibrium position
by linearized stiffness and damping matrices depending on the angular rotor velo€ther external

and internal damping effects are neglected or are respected approximately. Mostly external vs. internal
damping was studied on the fundamental model with rotor mass concentrated in the disk without (Gash
& Pfutzner (1975), Kamer (1993)) or with gyroscopic effects (Musgka (2005)). An internal and ex-
ternal damping impact on the stability of the rotors supported on two non-isotropic oil-film bearings was
investigated in the paper Zeman & Rendiq2011). The finite element discretization of the turbocharger
rotors has been used for the undamped sl&fhék (2013)) or damped rotor (Genta (2005)) using the
transfer matrices method. In these works only stiffness and damping effects of one oil-film of bearings
was considered. The aim of this article is to present a generally accepted methodology for modelling of
the turbocharger rotor supported on two flexible non-isotropic oil-film floating ring bearings respecting
two separable oil-films of both bearings and external and internal rotor damping.
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Fig. 1: Computational model of the turbocharger rotor
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2. Discretization of the rotor shaft

Thefinite element method (FEM) is applied for a discretization of the flexible rotor shaft with rigid disks.
The motion equations can be written in the space of general coordinates

dqr = ["‘7Ui7wi719i7¢i7"‘]T7 (1)
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Fig. 2: Prismatic shatft finite element

wherewv;, w; arelateral andy;, ; angular shaft displacements in the nodal paiit the inertial co-
ordinate systenX, Y, Z (Fig.2). The mas\I(®), gyroscopicvG'®) and stiffnessk (¢) matrices of the
undamped prismatic shaft finite element (FE) between two adjacent nodal pa@intsi + 1 can be
derived using Lagrange’s approach from the identity

d <8E,(f)> OB\ . OBy

— M4\, + wG g, + K©ql7), | 2)
at \ 54
9y z

dayy  0ayy
where shaft FE displacements are arranged into vector

que)z = [v3, %4, Vi1, Vi1, Wi, Oy i1, Vi) - )

The FE matrices have structure (Byrtus et al. (2010))

-7 -1
(e) _ Sl (AIq>+JIq,/)Sl 0
M =p [ 0 S;T(AIy + JIg)S;" | @
. 0 STTI14 851 . ST Ip:871 0
el :2pJ|: —SETIcp/S;l 1 (;D 2 ] JK© :EJ{ 1 ab 1 s;TIq,uS;l } , (5)
where

l l l
Iy = / &7 (2)®(z)dx, Io = / &7 (1)@ (2)dz, T = / " (2)®" (x)dxz,
0 0 0

1 0 0 0

®(z) = [1,r,2% 2%, S10 = (1) jél l% l% , sign + for Sy, sign — for S5 .

0 +1 =421 +372

Every shaft element of lengthis determined by mass densjty cross-section ared, second moment
of cross-section ared and Young's modulug.

External damping forces, acting on the shaft FE, depend on the lateral absolute velocity. The
Rayleigh dissipation function in the inertial coordinate sysfeny, 7 is expressed as

1

l
Ry =3 /0 ey o®(2,t) + bpzuw?(z, t)]d, (6)
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wherebgy andbge [kem~!s~1] are coefficients of viscous damping per unit length of the shaft FE. Its
lateral deformations along the shaft FE are approximated polynomial in the form

v(z,t) = ®(2) ST i, Vi, Vi1, Yig] T wla, t) = S(2) S5 wi, 95, i1, Via]” (7)
Theexternal damping matriBg) results from identity

ORY
04y,

. bEySI_TI@SIl 0
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The normal stress; generated by internal damping forces in axial direction can by expressed as
proportional to longitudinal strain velocity (Gash &Rfner (1975)) in the forma; = b Fé,., whereb;
is coefficient of viscous internal (material) damping anpds longitudinal unit deformation. The power
of the elementary damping force transmitted by surface elemenf drbss-section is;d A¢,dz, where
¢, dx is strain rate. The corresponding Rayleigh dissipation function in rotating coordinate system
(x = X) is expressed as

1 l
R =2 / / brEedAdzs . (9)
2Jo Ja

Providing small angular flexural cross-section displacements longitudinal unit deformation in arbitrary
point (n, ¢) of shaft cross-section is
9%v, 0%w,
€z = —TIW - CW . (10)
The lateral shaft FE deformations., w, in the rotating coordinate frame, y, z can be approximated
polynomial in the similar form to (7)

or(2,t) = ®(2)S7 Vi, Virs Vigtrs Vi) 5 wr(@, ) = B(2) S5 Wi, Vg, Wit1,r, Vi1
(11)
where lateral displacements marked with subsatipti + 1, correspond to nodal poirti + 1. The
angular flexural cross-section displacements around rotatingy@xeg, 2’ || = are marked’, and1,

(Fig.2). Theinternal damping matri>B§e) results from identity

IR )
—L — B4 12
0q,. 1V (12)
where shaft FE displacements in rotating coordinate system are arranged into vector

@' = Wi, Vi, Vig1,s Vi1 Wi, Vi, Wig 1, i - (13)

According to (9) up to (13) we get internal damping matrix in the rotating coordinate system

-T -1
(e) _ S1 Ler Sy 0
By =bEJ 0 ST TgnS5L | - (14)
We use the relations
al) = T(t)ay),, 4 = T(t)a\), + T(1)ds), (15)

between displacement and velocity vectors of shaft FE nodal points in the ratatingand the inertial
X.,Y, Z coordinate systems. The internal damping force ve(qfé?))yz = —B§e>q§? on the right side

of the shaft FE motion equations is transformed to the inertial coordinate system

(f\)yz = -TT(1)B 49 . (16)

According to (3) and (13) the transformation matrix is

FEcoswt Dsinwt .
T(t)= "D sin wt Ecoswt} , D =diag[l,—1,1,—1] a7)
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and E is unit matrix of order four. Using relations (15) and (16) we get
(F vz = -T"OBYT 4, - TT () BYT (a7, (18)
Itis possible to achieve relations
7" (t)B\T(t) = BYY , T ()BT (1) = wC®) (19)

whereas matrix

0 S T14S7'D
~-DSTI4nST? 0 ’
for constant angular rotor velocity is in time the constant antisymmetrical matrix. This so-called
circulatory matrix is linearly dependent on shaft angular velocity. Mathematical model of the shaft FE
bending vibration in inertial coordinate system according to (2), (8) and after translation of the vector
(fge))yz expressed in (18) on the left side of the shaft FE motion equations has the form

wC'® = Wb EJ (20)

Mg + (BY + B + wG )¢\, + (K +wC@)gl), =0. (21)

It's evident that external damping generates dissipative symmetrical damping Bé‘i}imnd internal

damping generates dissipative symmetrical damping mﬁiﬁg( and antisymmetrical circulatory matrix
wC®),

3. Equations of rotor motion

The motion equations of the automotive turbocharger including the rotor shaft, turbine wheel, compres-
sor wheel, seal and thrust rings and two rotating floating ring bearings (Fig.1) will be derived in the
configuration space defined in the form

q= [QEa qg]T = [ -+ Uy Wiy 19171/)7;’ -+ Vg, Wa, Vp, wb]T ) (22)

where vectol ; of dimensiord N (N = number of rotor shaft nodal points) was defined in (1) and the
subvector

qB - [Ua,wa,’l)b,wb]T (23)

expresses lateral displacements of the rigid bearing rityg@eft) and R,, (right) with respect to frame.
The matrices of the shaft element defined in equation (21) must be transformed in the form

X, =P'x@p, x© =M BY BY g K c, (24)
where permutation matri® corresponds to relation

(e)

T
ay, = Pq., q. = [vi,w;, Vi, Vi, Vig1, Wig1, Vig1, Yig1]

The structure of the all global rotor shaft matrices without disks and bearings is given by following
scheme

Xp=) diagl0,X.,0], Xp =Mz BY BY Gr Kg Cre RNW (25)
with block matricesX . determined in (24).

The mass, gyroscopic and external damping matrices of the axisymmetric rigid disk fast linked with
the rotor shaft in nodal poiritcan be derived using Lagrange’s approach based on the kinetic energy and
dissipation function. The kinetic energy of the disk includes of the lateral and rotational parts

EP) = %m[(i}i — ay)? + (W + ad;)?] + %Io(w +pbi)? + %I(ﬁ? +92), (26)
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wherem is the massq is the distance of the disk mass center from nodal paisee Fig.1) and, I, are
the transverse and polar mass inertia moments. The disk dissipation function is

RP) = “y (07 + ) + Shu(0? + 7). (27)

whereb;, b. arelateral and circulant damping coefficients, respectively. The mégs external damping
Bp and gyroscopicwG p matrices of the balanced disk follow from identity

d (aE,gD)> oE") L

< — Mpi, + (B i 28
dt aqz aql 8(]1 DY, + ( D+ WGD)qz ’ ( )

whereq; = [v;, w;, 9;,9;]T is vector of the rotor shaft nodal points displacements. Substituting Egs.
(26) and (27) into identity (28) we get the disk matrices

m 0 0 —ma 0 0 0 0
0 m ma 0 0O 0 O 0

Mp = 0 ma I+ ma? 0 Gp=| 0o 0 Iy |’ (29)
—ma 0 0 I + ma? 00 —Iy O

BD = diag[bl, bl, bc, bc] .

The mass, external damping and gyroscopic matrices of the rotor shaft with disks (turbine and compres-
sor wheels, seal and trust rings) have structure
XR:ZX€+ZXD7 XR:MRvBEQE)aGRu XD:MDvBD7GD7 (30)
e D

where the FE matrices (24) and the disk matrices (29) are localized on positions corresponding to cou-
pling shaft nodal points displacements.

In order to reduce the bearing friction, the high-speed turbocharger is supported on the rotating
floating ring bearings having the inner (l) and outer (O) oil films (Fig.3). We consider the rotor shaft
rotation with constant angular velocity in the opposite direction around axis. Using Lagrange’s
approach we derive the mass matrix of the rotating floating ring bearings. The kinetic energy of both

OUTER OIL FILM
RING

INNER OIL FILM JOURNAL

Fig. 3: Rotating floating ring bearing

rings,on condition lateral ring vibrations is

1 1
E, = §ma(@g + k) + §mb(i)§ +1ip) (31)
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wherem,,, my arering masses. The corresponding bearing mass matrix in the configuration space defined
in (23) follows from identity

oEP
995

= MB(IB = Mp = diag[maa Mg, My, mb] . (32)

The bearing forceﬂ(”, Ft(l) andFr(O), Ft(o) (see Fig.3) are based on the corresponding rotating coor-
dinate system (kamer (1993)) s, t ;y andrg, tg of the journal (J) and ring(R). Therefore, the coordinate
transformation from the rotating to inertial coordinate systén¥ is necessary for the formulation of
the motion equations

Fy) | sindy cosdy Frw F}(,O) _ | sindg  cosdp FT(O) (33)
FO | T [cosdy —sindy || gD || FO | T [ cosop —sindn | | E©

whered s, dr are angular positions of the journal and ring, respectively. Bearing force components in the
rotating coordinates depend on thg ¢, 5;,w—wp andeg, ép, Op, Wr nonlinearly (Kamer (1993),
Shafer (2012)), where ;, e are the journal and ring relative eccentricities anduy are the angular
velocities of the rotor (journal) and bearing ring.

In case of linear rotordynamics the bearing fora}éé) D and F( ) Ft(o) are linearized in the
neighbourhood of the static equilibrium position. In case of the floatlng ring bearings the linearized
forces are

Y Fo(lxz _[ kyy(w) kyz(w) ] { vy — VR }_[ byy(w) byz(w) } [ Uy — VR ]

Fél) F(S,IZ) kzy(w) kzz(w) Wy — WR bzy(w) bzz(w) wy — WR |’
(34)

F(O) F(O) k‘yy(w) k‘yz(w) UR bYY(W) bYZ(W) ’ULR

Ao TR | ) ez Lo |- Lo b [ |- @0

wherev;, wy andug, wr are displacements of the journal and ring centres from the static equilibrium
position resulted from static load of the journals and bearing rings.

The bearing oil stiffness and damping coefficients in Egs. (34) and (35) can be in the first approxi-
mation expressed depending on relative journal speed with respect to beariaging and on bearing
ring speedvr. So-called the ring speed ratidSR = “£ atthe steady state condition depends on dy-
namic viscosity of the inner and outer oil-films, geometrical parameters of the bearing ring and inner
and outer radial bearing clearance §&r (2012)). As a result of specific ring speed ratio in steady state
conditions (constant) the stiffness and damping matrices of the inner and outer oil-films in Eqs. (34)
and (35) depend an. We describe them & (w), B (w) for inner oil-film andk () (w), BY (w)
for outer oil-film of the left (x = a) and right (x = b) bearings. The changes of the bearing forces
relating to small displacements and velocities of the rotor from static equilibrium positions, expressed
by the second and the third components in Egs. (34) and (35), in the global coordinate system defined in
(22) can be expressed in the matrix form

~AFR!)
ari]
AR
Apd) g G
Afp = AIFva = —Kp(w) [ g}; ] — Bp(w) { gg } ; (36)
AR — AR
AFY) — AFS)
O
st
| AFY) - AR
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wheregp, g arevectors of rotor shaft and bearing rings displacements from the static equilibrium posi-
tion. According to (34) and (35) the stiffness and damping matrices of the two separated oil-films of both
bearings are localized in global matrices according to veatgrs= [vs,,w )", gr, = [Ur,, wr,]|",

r = a, b as follows

K((II) —Kgl)

ta,
=0 G .
Kp(w) = _gWD ’ KD 4 K©) b }}q;l; ; Bp(w) ~ Kp(w). (37)
e KD+ Kk | }ar,

The linearized motion equations of the turbochargers (Fig.1), according to (30), (32) and (36) can be
written as

Mg 0 ar BY +BY —w@r 0 ar
ey L (P e ) [ ]

([ oma)[§]-(4] o

wheref »(t) is vector of the unbalance of disks (turbine and compressor wheels).

4. Application

The homogenous motion equations (38) (fgf(¢) = 0) was applied on eigenvalues calculation of the
small automotive turbocharger with rotor mass 0.1[kg]. The rotor discretized into 13 nodes (Fig.1) is
supported on two short cylindrical floating ring bearings. The eigenvalyese found by solving the
eigenvalue problem

(A= AE)u=0 (39)

in state space = [g, |, where non-symmetric system matrix is

~M'Bw) ~-M'K(w)

A= E 0

(40)

andM, B(w), K(w) are global matrices of order = 56 in the motion equations (38). The bearing
stiffness and damping coefficients were calculated by means of bearing dimensionless stjffa@ss
damping;; coefficients (Kamer (1993), Shfer (2012)) using the Reynolds lubrication equation for
radial cylindrical short bearings with the non-cavitating oil-films. The bearing forces were linearized
by using the Taylor’'s series at the journal and bearing rings static equilibrium positions. The bearing
inner and outer oil-film coefficients of both bearings in equations (34) and (35) were calculated for the
static load at equilibrium, constant rotor spee@dnd ring speed ratio for the concrete oil and geomet-
rical bearing parameters. The dynamic oil viscosities of the lubricating inner and outer oil-films versus
temperature were calculated using the Cameron and Vogel equatiaief $2012)).

The linearized mathematical model of the rotor has besides complex conjugate pairs of eigenval-
ues also even number of real values representing nonoscillatory overdamping modes. The real part of
two low-frequency eigenvalues is positive however their imaginary parts are much smaller than the ro-
tor speed. The Campbell diagram displayed at Fig.4 expresses the dependence of the eigenfrequencies
(imaginary parts of the complex eigenvalues) of the turbocharger on rotorspceé’tgrE [rpm]. The crit-
ical speeds;, [rpm], where the eigenfrequencies cuts the synchronous excitation line, can be calculated

as roots of the nonlinear equation

30
n= ?Im{)\u(n)} . (41)

The calculated critical speeds in the investigated rotor speed range(24000,240000) [rpm] are
given in Table 1. The rotor unbalance, caused by the static unbalance of the turbine and compressor
wheels with different angular phasg: between unbalanced turbine and compressor wheel vectors, can
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Fig. 4. Campbell diagram of the turbocharger

Tab. 1: Critical speed of the rotor (B=backward, F=forward) without and with strengthening of the shaft
in area of the compressor wheel

Critical speeds
order | without strengthening with strengthening
fIHZ] n[rpm] fIHz] | nlrpm]
1 677.38 40643 712.94 | 42776 | B
2 875.20 52512 889.71 | 53377 | F
3 2239.38| 134363 | 2483.76| 149026| B
4 3241.25| 194475 | 4865.54| 291932| B
5 3637.61| 218257 | 5436.85| 326211 F
be expressed in equations (38) by the complex form
mrer 1
imrper .2
imrera -3
] o ] —mrera o4
Fr(t) = Fre™’; fr=w? : D i=v-1, (42)
moece®c ...33
imceceiac . 34

wheremyer, moec [kgm] are corresponding unbalances. According to (38) the vector of complex
amplitudes of the rotor steady state displacemgnts|qp, q | from static equilibrium position is

q=[-Muw’+iwB(w) + K(w)] ™" { fOR } : (43)
The turbine and compressor wheel amplitudes of lateral displacements versus rotor speed caused by
the permissible residual unbalance according to standard DIN-ISO 1940:(SR012))mrer =0.1

[gmm], m.ec=0.05 [gmm] are displayed in Fig.5 and Fig.6. The unbalance generates resonances at
neighbourhood of critical speeds.
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x10°® Amplitudes of turbine wheel lateral displacements

Vo W [m]

0.5 1 15 2 2.5
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Fig. 5: Amplitudes of turbine wheel centre lateral displacements for balancing quality grade G40 of the
DIN-ISO1940 andae = 0

x10°° Amplitudes of compressor wheel lateral displacements
T T

Vo We [m]

0.5 1 15 2 25

pm x 10°

Fig. 6: Amplitudes of compressor wheel centre lateral displacements for balancing quality grade G40 of
the DIN-ISO 1940 andvc =0
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5. Conclusion

Thedescribed method was applied to investigate the complex eigenvalues, stability, unbalance response
and critical speeds of the well-balanced concrete turbocharger rotor supported on two floating ring bear-
ings. The computer program in MATLAB code makes it possible to analyse an influence of design and
operation parameters of the turbochargers on these phenomenons. The adjusted nonlinear mathematical
model including nonlinear characteristics of the bearing forces will be used for vibration analysis at the
large journals and floating bearing rings deflections.
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