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Abstract: In the paper the use of permanent magnet with coil, augmented by an external resistance, for 
transversal vibration control of a flexible slender beam is analysed. The magnetic circuit properties are 
varied due to external harmonic excitation by a rotating machine. The so induced alternating voltage 
drives alternating current through closed electric circuit, which is dissipated in external resistor. The 
induced current driven through the coil generates magnetic force, which damps the excitation force and 
changes the damped natural frequency of the oscillatory system. The internal losses in the coil influence 
the overall system’s performance. A lumped parameter model of the combined system is derived in a 
simplified, linearised form for a particular machine frame, using measured system parameters. The extent 
of system natural frequency shift is assessed. 

Keywords: Vibration control assessment, Electromagnetic actuator, Harmonic excitation, 
Numerical simulation. 

1. Introduction 
Many of the vibration control problems of rotating machinery are associated with various resonance 
phenomena in the machine frame. To avoid interaction of the rotating machine dominant rotating 
frequencies and their harmonics with eigenfrequencies of the supporting structure following methods 
are in general used: 

- detuning of the frame eigenfrequencies from the range of machine operational frequencies; 
- introduction of additional damping to the (usually low) structural damping of the frame. 

Recently, some active and semi-active methods of vibration control were explored. Electro-
dynamic and electro-magnetic actuators were used for such a control strategy as presented in 
(Bishop, 2002; Giurgiutiu & Lyshewski, 2009; Preumont, 2011). Some applications of vibration 
control of cantilever beams using electromagnetic and electrodynamic vibration controllers were 
published by Gospodarič et al. (2007); Cheng & Oh (2009); Niu, Xie & Wang (2009); Brezina et al. 
(2011) and Belhaq et al. (2011). Especially Xu and Zhu (2010) used an electro-magnetic actuator for 
driver’s seat vibration control. 

This contribution, based on first author’s previous works (Stein et al., 2011; Stein et al., 2012), 
analyses the use of a permanent magnet with a coil for similar purpose. It has been shown therein that 
the controller of interest is capable to introduce damping, as well as alter damped natural frequency of 
the oscillatory system. In order to model more realistic system, particular parameters of a dummy 
system are used in here. The system mocks-up a real rotating machine, situated on the frame (chassis).  

2. Description of the analysed system 
The contribution describes the use of an industrial pot type magnet with a ferromagnetic yoke fixed in 
the middle of a diamagnetic slender beam of length l, mass m, ideally clamped at the ends. The beam 
represents the machine frame. A static magnetic field is generated by the permanent magnet (PM), 
located in the centre of a coil. As the yoke vibrates due to the influence of the harmonic force FE(t), 
the air gap width d(t) varies with time. The variation of d(t) is responsible for time variation of the air 
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gap reluctance and consequently for the primary magnetic flux time variations. According to 
Faraday’s law, magnetic flux time variation induces alternating voltage u(t) in the coil. The induced 
voltage forces a current i(t) flowing in the closed electrical circuit. The direction of i(t) is such that so 
generated secondary magnetic field opposes the primary field of the PM (Lenz’s law). The alternating 
magnetic force, due to the induced current, acts both as a damping and a spring force. The current i(t) 
is dissipated in the shunt resistance RT, which includes also all the electrical losses in the coil. The 
combination of the static magnetic force FM0 of the PM and the dynamic one FM(t) influences the 
structure stiffness and thus the natural frequency. Moreover, the induced current i(t) intensity 
influences the extent of damping.  

3. Simplified derivation of the magnetic field influence 
As assumed, a periodic force FE(t) is exciting the clamped-clamped, slender beam at its midpoint. Due 
to force FE(t) the air gap width d(t) between the yoke and the core is periodically varying, thus 
generating an alternating magnetic induction B(t) in the air gap. According to Faraday’s law of 
induction, in the coil of cross-section SW and number of turns N, alternating voltage ui(t) is generated:  
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where:  -    Φ = N SW B(t) is the total magnetic flux in the opened magnetic circuit,  
- i(t) is the alternating induced current flowing through the closed electrical circuit, 
- RT is the total electric resistance of the closed circuit (including coil losses). 

The magnetic circuit consists, according to Hopkinson’s law, of series connection of the 
reluctances of the air gap (twice), the pot core, the yoke and of the PM itself. Assuming constant core 
cross-section SC and neglecting fringing effects and core/yoke material magnetic non-linearity, it can 
be derived (Giurgiutiu & Lyshewski, 2009; Meyer & Ulrych, 2009): 
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where lC, lg, and lPM are in turn the length of the flux line in the core/armature of relative permeability 
µrFe, of the air gap and of the PM, with material relative permeability µrPM, respectively. FΦ(t) is the 
magnetomotive force in the said magnetic circuit, which has a steady state component, due to the PM, 
and a time varying component, due to the alternating current i(t), as it follows from the Ampere’s 
circuital law (Meyer & Ulrych, 2009): 
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where the contour integral over the closed curve C follows the middle magnetic flux line of length in 
air lΦr, depicted dashed in Fig. 1, and Mm is the PM magnetisation. 

Introducing the scaled dimensions dC = lC/(2μrC), dPM = lPM/(2μrPM), 2(d(t) - d0) = lg and the non-
dimensional parameter δ = (dC + dPM)/d0, then, according Stein et al. (2011), it follows: 
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where: 
- d0 is the equilibrium distance between yoke and the PM, 
- w(t) is the dynamic displacement of the yoke from the equilibrium position d0: w(t) = d(t) – d0 in 

the positive (upwards) direction,  
- ε(t) is the relative dynamic displacement: ε(t) = w(t)/d0, positive in the upward direction, further 

referred to as the relative air gap width (a non-dimensional quantity). 
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          It will be further assumed that |w(t)| << d0, i.e. |ε (t)| << 1. 

Eq. (4) represents the general form of magnetic induction in the air gap in the time domain. If the 
electrical circuit is not closed, no current is flowing and the last term in numerator is zero. There is no 
oscillating magnetic field and just the static magnetic field in the air gap, B0 is present, due to PM 
magnetisation Mm: 
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Substituting from Eq. (1) into Eq. (3) for the induced current i(t), it follows:  

dt
tdB

R
SNMtNiMtF )()()(
T

W
2

mmΦ −=+= , (6) 

and:  
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Now, when all the characteristics of the electro-magnetic circuit have been derived the magnitude 
of the magnetic force FM acting onto the yoke downwards can be expressed. Hence, in this particular 
case (Meyer & Ulrych, 2009): 
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because the Maxwell’s magnetic pulling force is acting both at the inner core and at outside annulus, 
both having the same cross-section SC. After substitution from Eqs. (7) and (5):  
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Note, that the magnetic force FM(t) due to squared magnetic induction has a non-linear form and 
hence is difficult to calculate. Some simplifications have to be made. Moreover, the time variation of 
the magnetic induction B(t) in the air gap has to be evaluated, too. 

Let us first consider |ε| << 1. Then the acting magnetic force FMO can be approximated by 
linearization in respect to variable ε, i.e. taking the first two term of a MacLaurin expansion:   

( ) ( )
)(

1214
)( 3

2

2
0

C0
2

2

2
0

C0
MO tF

d
SF

d
SF ε

δ
µ

δ
µ

ε
+

−
+

≅ ΦΦ . (10) 

As derived in (Stein et al., 2011) the total differential of magnetic induction B(t) can be calculated 
from Eq. (4) as: 
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By further algebraic manipulations it results, that the time dependence of the variable magnetic 
induction is described by a first order differential equation in dB/dt in respect to ε& : 
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The term in the square bracket is the self inductance L0 of the coil at air gap d0 and B0 is the static 
magnetic induction in the air gap width d0, as introduced above by Eq. (5). 

Note, there is a difference in the areas SW (cross-section of the coil) and SC (cross-section of the 
core). However, because the magnetic flux is flowing mainly through the ferromagnetic core with 
relative permeability µrC >> 1, it can be assumed that SW ≈ SC. 

The total resistance RT in the electric circuit consists of the series combination of the external 
shunt resistance RS, internal resistance of the coil RC and the resistor RL, which is used to model the 
frequency dependent losses in the magnetic material. The series equivalent circuit of a technical coil is 
used, so the resistances RC and RL are connected in series with the coil inductance L0:  

)()( LCST ωω RRRR ++= . (13) 

No eddy currents are acting in this specific configuration, because the beam velocity vector v
r  has 

the same direction as the vector of the magnetic induction B
r

 giving a zero vector product Bv
rr

× , 
entering the expression for the Lorenz force, which describes the eddy currents in conductors 
subjected to magnetic field.  

4. Simplified derivation of the magnetic force influence 
The influence of the magnetic force in the air gap plays a decisive role in the analysed system 
description. Let us start with analysis of the mechanical part of the system.  

4.1.  Static analysis 
Firstly, let us analyse the static deflection of a slender beam of length l, mass m rigidly fixed on both 
ends, loaded at beam midpoint by the mass of the yoke and a the supposed machine, jointly of mass M, 
without the presence of the PM. Let us assume, that the machine can be represented by a concentrated 
mass M at the beam midpoint. Using the standard expression of equivalent (lumped) stiffness for the 
clamped-clamped beam, the small deflection, hS at the beam midpoint from a straight line due to mass 
M is (Bishop, 2002; Stein et al., 2011 and 2012):  
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where EY is the modulus of elasticity (Young’s module) of the beam material and Ib is the second 
moment of inertia of the beam cross-section. The weight, given by the first coefficient, bends the beam 
from an ideal straight form a little. The second coefficient is the inverse of the equivalent bending 
stiffness of the beam, kS at beam midpoint.  

Let us now locate the PM below the bent beam midpoint. Same formula holds for the static 
deflection by the magnetic force FM; however, the first term in Eq. (14) is substituted by the static 
magnetic force FM0 (Stein et al., 2012):  
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where d0 is the static distance between the yoke and upper plane of the core. 

As seen from Fig. 1, the magnetic force FM0 is counteracted by the static elastic spring force FS. 
If FM0 were to overwhelm FS, the yoke would be permanently attracted to the PM and any oscillatory 
motion would cease. This situation has to be avoided. Let us define a fictitious distance h between the 
yoke of the statically bent beam and the upper plane of the PM core in the virtual absence of the 
magnetic field. If now the magnetic field of the PM is accounted for, the spring would elongate and 
the yoke would reach an equilibrium position at a distance d0 < h. When the distance h is slowly 
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reduced, at a certain distance hL the magnetic force would overwhelm the elastic force and permanent 
attraction would occur, i.e. d0 would become zero. Let us describe the specific d0L just before this 
instant in respect to hL as d0L = hL(1 - εs), where εs is a downward relative static displacement from hL 
(0 < εs < 1). The static equilibrium is then expressed using equation (15) (Stein et al., 2012): 
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Equation (16) leads to a cubic equation in εs: 
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Equation (17) has three real roots, if its discriminator D3 ≥ 0 (Frank et al., 1973). From the solution of 
the equation (17) follows, that this condition is fulfilled if: 
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The equality case corresponds to the sought limiting case. The three real roots for D3 = 0 are: 
εs1 = εs2 = (1+δ)/3 < 1 and εs3 = 4/3(1+δ) > 1. This result can be physically interpreted that either the 
system is just at equilibrium at a particular distance or it should be within the magnetic circuit core, 
which is physically impossible. Hence, this is the limiting case of the ‘jump’ from the stable 
oscillatory mode to the fully attracted mode, albeit neglecting any system dynamics and/or mechanical 
transitions. The total magnetic flux line length in air lΦr for this case should follow the inequality:  
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For a particular PM, magnetic circuit parameters and spring stiffness kS, the limiting value hS can 
be assessed for the equality in Eq. (19). However, the yoke will be positioned at the distance 
d0L = hL(1 - εS1) from the original beam position without the influence of the magnetic field. 
The measurable distance between the yoke and the upper plane of the core, d0L, is for the limiting case:  
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In practice, any air gap width d0 ≥ d0L can be used without jeopardising the vibration control.  
 

 
Fig. 1: Equivalent SDOF oscillatory system. 
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4.2.  Description of the system dynamics 

For sake of simplicity, the beam is modelled as a single degree-of-freedom (SDOF) oscillatory system 
subjected to a harmonic excitation force FE(t). As described above, additional magnetic force 
FM(d0,i(t)) is generated. The governing equation is hence: 
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where: 
- M is the mass of the yoke and mass of the machine, 
- cS is the viscous damping coefficient, modelling the internal damping of the beam, 
- kS is the equivalent beam stiffness at its midpoint, 
- w is is the midpoint displacement in the upward direction and its time derivatives. 

Introducing the relative air gap width ε(t) and the natural frequency of the equivalent oscillatory 
system ω0, ( MkS

2
0 =ω ); being approximately beam first eigenfrequency (Harris & Creede, 1961): 
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The response of the system is analyzed under steady state condition, while the exciting harmonic 
force is FE(t) = F0sin(ωt) of angular frequency ω, expressed, using the complex notation, as 
FE(t) = F0Re{exp(jωt)}. It is assumed, that all transient phenomena (electric and mechanic) are extinct. 
Assuming, that the response will be harmonic too, the complex relative air gap width E~  will be 
expressed as tt eeeE ωϕω ε jεj
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where: 

- 0ωω=Ω  is the non-dimensional frequency ratio, 
- CSS cc=ξ is the damping ratio with Mkc SC 2= being the critical damping coefficient. 

The term in the square brackets on the left hand side is a linear second order operator, describing 
the behaviour of the SDOF oscillatory system without the influence of the PM magnetic field. 
The normalized displacement response of the uncontrolled mechanical SDOF oscillatory system 0

~E  
can be evaluated for any external harmonic excitation force FE by setting 0~

MO=F .  

The magnetic force, is in linearised, approximate form given by Eq. (10). It can be expressed in the 
frequency domain as: 
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Due to the square of the magnetomotive force phasor, ΦF~ , the magnetic force acts at Q multiple 
harmonics of the excitation frequency ω. From Eq. (6): 
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where, the time derivation of magnetic induction phasor, B~ , was performed in the frequency domain. 

The magnetic induction phasor B~  is evaluated from Eq. (12) by applying the Fourier transform. 
After some algebraic manipulation it follows: 
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Further inserting B0 from Eq. (5) and noting the definition of inductance L0 from Eq. (12), the 
magnetomotive force FΦ of Eq. (25) is expressed as: 
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Looking at Eqs. (24) and (27) it can be qualitatively stated that after performing the multiplications 
and some algebraic re-arrangement following magnetic force components emerge Stein et al. (2012): 

- a static component for n = 0, affecting the equilibrium position at d0 and so the static magnetic 
induction B0 (see Eq. (15)): 

 
2

)1(
)1(2)1(4

0
33

0

2
mC0

22
0

2
mC0

M0
δ

δ
µ

δ
µ +

⋅







+

=
+

=
d

d
MS

d
MSF . (28)  

As derived above, the static magnetic force FM0 must be smaller than FS, else the beam clams 
to the PM and any oscillatory movement ceases. There is limit on the distance d0, as explained. 

- a component at the angular frequency ω (n = 1), contributing to the equation of motion 
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Both terms give relation between the relative air gap phasor E~ and the magnetic force 
component phasor 1

~
MF . 

- a second harmonic component at the angular frequency 2×ω (n = 2), which is well known to be 
associated with magnetic circuits (Bishop, 2002; Giurgiutiu & Lyshewski, 2009). However, in 
the case of clamped-clamped beam excited at the midpoint, i.e. in the antinode, no mechanical 
effect could result.  

- a third harmonic component at the angular frequency 3×ω (n = 3). However, being of the order 
of |ε |3 it can be assumed that it does not markedly influence the system behaviour. 

Note, that in Eq. (28) and (29) the same factor (highlighted in the brackets), related to the magnetic 
circuit properties, occurs. The factor in the brackets can be termed the equivalent, linearised magnetic 
field stiffness at air gap width d0, kM. Then the Eq. (29) can be modified and introduced into Eq. (23), 
to arrive at the system behaviour at excitation frequency ω. 
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Introducing the stiffness ratio κ (κ = kM/kS) and the coil reactance X0 at the mechanical system 
natural frequency ω0: X0 = ω0L0, Eq. (30) can be further modified to become: 
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The displacement response of the oscillatory system, E~ , can be now evaluated from Eq. (31) and 
compared to the response of the uncontrolled mechanical system 0

~E . In particular (Stein et al., 2011):  

-  There is a change (decrease) of the angular frequency ωC, describing the natural frequency of the 
system with the PM, in respect to the natural frequency ω0 of the uncontrolled SDOF mechanical 
system: 
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which, for the given air gap width d0, depends on the properties of electrical circuit (total circuit 
resistance RT and coil self inductance L0). 
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-  Additional electro-magnetic damping is introduced, which can be described by electro-magnetic 
damping ratio ζE:  
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again depending for the air gap width d0 on the electrical circuit properties. As discussed in 
more detail in (Stein et al., 2011), there is an optimal value of the total resistance RT, equal to 
X0, when the maximum of electromagnetic damping is attained. 

The dimension-less factor κ, describing the magnetic circuit properties, is:  
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Note, that from the inequality (19) follows, that at most κ = kM/kS = 16/27 ≈ 0.59, to facilitate 
proper functioning of the vibration control system. 

To conclude, the introduction of a PM with coil and external resistance, located at midpoint of the 
clamped-clamped beam at a distance d0 below introduces additional (electro-dynamic) damping into 
the oscillatory system and decreases the natural frequency of the combined system. Both effects 
depend on the magnetic and electric properties of the device. Moreover, the static equilibrium position 
of the beam is modified, too.  

5. Preliminary experimental determination of the system parameters  
The electro-magnetic properties of the particular PM with coil, type GMPX 050 of the Magnet Schulz 
Company, Memmingen, Germany were measured for various air gap widths: 0.22 mm, 0.45 mm, 
0.90 mm and 1.35 mm, using the automatic RLC meter of type Hioki IM 3570. For all air gap widths 
the DC coil resistance was RC = 17.0 Ω. The core cross-section is, according to manufacturer’s 
drawing, Sc = 4.41×10-4 m2.  

It was observed, that the coil resistance, RL, as well as coil reactance X0 are frequency and air gap 
dependent (Fig. 2).  

(a) 
 

(b) 
Fig. 2: Frequency and gap width dependence of: (a) coil resistance RL(ω), (b) coil reactance X0(ω). 

Another issue is the behaviour of the magnetic circuit, best expressed as the static force FM0 
dependence on air gap width d0 (Eq. (15) or (28)). However, some variables are not readily available, 
nor given in the manufacturer’s data. Hence, the dependence had to be established experimentally. For 
this purpose a test stand was manufactured, enabling to move the PM in the vertical direction. The 
combination of the yoke weight and the magnetic force was measured by a force transducer, type 
LCM101, manufactured by Omega Engineering, Stamford, Con., USA; while the distance d0 was 
determined by a set of plastic foils of thickness 0.22 mm. Because the force transducer was sensitive 
both to pull and to compression a somehow tricky adjustment was necessary to arrive at the exerted 
force. Given the circumstance, the relation between FM0 and d0 was measured with low accuracy, 
assessed at some 5 % of the measured value. From Eq. (28) follows, after algebraic manipulation: 
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wherefrom the unknown parameters (dC + dPM) and magnetisation Mm can be identified by the least 
squares method. The course of preliminary measurements of the static magnetic force FM0 in respect to 
air gap width d0 is depicted in Fig. 3. Notice, that despite of linearity of formula (35) the measured 
points are not situated on straight line. This deviation is due to measurement uncertainty and due to 
magnetic field deviations from linearity, stipulated by the Hopkinson’s law (Eq. (2)). Hence, just some 
air gap widths will be considered, approximated in Fig. 3 by the red line. From formula (35) it follows 
that (dC + dPM) = 0.165 mm and Mm = 120 A.  

 
Fig. 3: Graphical presentation of formula (35). 

Further issue is the equivalent beam stiffness for midpoint deflection kS. According to Eq. (14) kS 
can be evaluated by calculation from chassis geometry and material properties or by measurement of 
chassis deflection under stipulated load. Because the chassis has a rather complicated cross section 
profile, made of pressed steel sheet of thickness 0.3 mm and width 100 mm of length l = 554 mm 
between the fixtures and mass m = 474 g, the second moment of inertia of the beam cross-section 
calculation was deemed as imprecise. Hence, the midpoint deflection under a rigid load was measured 
by a dial indicator. The measured deflection due to rigid load of 6.925 kg was 0.96 mm leading to 
beam static stiffness of kS = 7.08×104 N/m. 

6. Simulation results for the analysed case  
Eq. (31) was programmed in Matlab®, loaded by stipulated machine mass M = 7 kg at chassis 
midpoint. For the evaluated beam equivalent stiffness kS = 7.08×104 N/m the undamped natural 
frequency of the equivalent SDOF oscillatory system is some ω0 ≈ 100 rad/s, i.e. 16 Hz. Let us assume 
mechanical damping ratio ξS = 0.03, excitation force F0 = 20 N. From Fig. 3 the parameters of the PM 
coil can be assessed for various air gap widths. The data extracted from measurements for frequency 
f0 = 16 Hz and used in the following simulation are condensed in the Tab. 1.  

Tab. 1: Numerical values entering the simulation and RS optimization. 

d0 [mm] RL [Ω] X0 [Ω] |ZT| [Ω] |ZT*| [Ω] 

0.45 7.8 24.2 34.7 34.1 

0.70* 6.9 22.0 32.4 31.0 

0.90 6.2 20.3 30.9 28.6 

* assessed by linear interpolation from measured data 

The last two columns indicate the calculated modulus of the coil impedance at frequency 16 Hz: 
2
0

2
CLT )( XRRZ ++=  and the measured impedance |ZT*|, interpolated from tabulated data. Note 

a good agreement of both values. 
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For illustration the projection of the course of the FRF response modulus E~ , according to 
Eq. (31), for the air gap width d0 = 0.70 mm in respect to the circuit resistance for the idealised case of 
loss-less inductance is presented in Fig. 4. The same projection; however accounting for the measured 
coil losses is presented in Fig. 5. In Fig. 4 the blue curve depicts the course of the FRF modulus 
maximum, while the green course depicts the FRF for the optimum RS, when the electro-dynamic 
damping is maximal. For the particular device this occurs in ideal case for Rs = X0 = 22 Ω, as follows 
from Stein et al. (2011). In Fig. 5 the course of FRF modulus maximum for the real device is depicted 
in red; however, starting at RS = 0, i.e. for RT = 22.9 Ω. From comparison of these two figures the 
difference between the ideal, loss-less coil and real coil is visible. It follows, that optimal damping can 
be obtained if |ZT| = √2⋅X0 (Stein et al., 2011). For the particular PM with coil the difference between 
the optimal electric circuit impedance √2⋅X0 ≈ 31.1 Ω and the measured impedance |ZT*| ≈ 31.0 Ω is 
diminutive. The same holds for the other two air gap widths. Hence, to obtain the most electro-
dynamic damping out of the actuator the coil has to be short-circuited.  

 
Fig. 4: Projection of the FRF modulus of ideal, loss-less coil in respect to shunt resistance RS  

(RS ∈ (0, 200 Ω)). 
 

 
Fig. 5: Projection of the FRF modulus of the real coil in respect to shunt resistance RS  

(RS ∈ (0, 200 Ω)). 

Next the extent of de-tuning in respect to variation in the air gap width d0 is illustrated in Fig. 6 for 
the real coil and stipulated external resistance Rs = 500 Ω. Because on the right hand-side of Eq. (31) 
the air gap width d0 is in denominator it is necessary to normalise the response modulus E~  in respect 
to same air gap width; specifically in this case to d0 = 0.70 mm. The attained frequency shift of the 
FRF maximum in respect to the uncontrolled system is by some 13 %, i.e. to Ω = 0.87.  

550



 

 
Fig. 6: The FRF modulus of real coil for RS = 500 Ω in dependence on the air gap width d0, 
normalized to d0 = 70 mm (d0 = 0.45 mm, green; d0 = 0.70 mm, blue; d0 = 0.90 mm, yellow).  

7. Discussion  
The derived formulas and the simulation example indicate the extent of vibration damping and natural 
frequency shift (de-tuning) of a realistic system. In contrary to idealistic simulations in previous first 
author’s papers (Stein et al., 2011 and 2012) the presented paper consequently accounts for the coil 
electrical properties. This is a better approximation of the real situation; however, still some 
simplifications have been introduced in the course of analysis to make the problem tractable:  

-  Simplification of the magnetic force description by Eq. (9). Especially the material magnetic 
non-linearity, fringing effects and magnetic field non-uniformity may affect the system dynamic 
properties. This is seen in e.g. the discrepancy of the linear magnetic force air gap width relation 
of formula (35) and the real measured response, depicted in Fig. 3. More adequate description 
of this relation would call for more measurements and a better approximation of the measured 
data by a non-linear relation. This is especially true for small air gap width. 

-  The assumption that the beam transversal vibrations can be approximated by a SDOF oscillatory 
system, describing the beam mid-point oscillations at its first eigenfrequency may be too simple. 
Higher eigenfrequencies may be excited. Hence, a more complex model of the beam-actuator 
interaction has to be designed. Also the simplifications in the course of derivation of the 
Eq. (31) might have been to optimistic.  

There are reports of using electromagnetic actuator as a device for de-tuning of a cantilever beam 
natural frequency, as described in Gospodarič et al. (2007); Brezina et al. (2011) and Belhaq et al. 
(2011). This is possible by changing the distance d0 between the beam and the PM, as illustrated in 
Fig. 6 for a clamped-clamped beam, or more favourably, by replacing the PM by an electro-magnet 
energised by a controllable DC current, as proposed by the first author elsewhere. Variation in the 
magnetic stiffness kM and corresponding decrease in the system first eigenfrequency from Ω = 1 up to 
Ω = (1 - κ/2)½ is possible, as follows from Eq. (32). This effect is often regarded as the introduction of 
the ‘negative stiffness’ into the oscillatory system and used in vibration control.  

8. Conclusion  
Based on the developed theory and some preliminary measured data for the particular permanent 
magnet with coil and a realistic machine chassis, the advantage of use of a permanent magnet with a 
coil as a vibration controller is exploited. Using an external resistance RS the original system natural 
frequency can be lowered to some extent, i.e. the oscillatory system natural frequency can be de-tuned, 
depending on the air gap width d0.  
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