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Abstract: This paper deals with application of the meshless methods for analysis of composite plates. 
The main focus is on the implementation of the MLPG formulation for layered plates. For this purpose 
the implementation of homogenization theory was required and analyses were performed in order to 
obtain homogenized material properties of composite plates. The software for homogenization of material 
properties uses direct homogenization method that is based on volume average of stresses in the 
representative volume element (RVE). Homogenization is performed by a multisoftware approach, by 
linking MATLAB and ANSYS software. Data obtained are used in analyses performed in own software, 
which is based on the MLPG method. Strain, stress and displacement fields were evaluated.  Results 
obtained by MLPG were compared with those obtained by FEM programs ANSYS and ABAQUS. 
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1. Introduction 
Plate and shell structures are the most widely used structural members in mechanical and civil 
engineering thanks to their good weight to load carrying capability ratio. Pipes, aeroplanes, hulls of 
ships, bridge reinforcements as well as reinforced roofs and membranes are good examples. 

Thanks to good material properties, especially to good weight to strength ratio fiber-reinforced 
materials came into practice. Laminates are composed of multiple layers where fiber orientation in 
particular layers can be different. By this way it is possible to obtain required material properties in 
required direction. 

The finite element method (FEM) is one of the most widely used and most popular numerical 
methods for analyzing plate structures. Although the method is stable, well developed and has reached 
extensive development during last decades, it also has some limitations. One of the assumptions in 
FEM is an existence of the mesh created from the finite elements. Mesh quality affects the accuracy of  
solution and stability of convergence. Creating well defined meshes can be very time consuming in 
some cases. Generally it is recommended to use finite elements with shapes which are the most similar 
to ideal shapes. Degenerated geometry or deformed shape can have a negative effect on the solution 
accuracy. This is very important in analyzing nonlinear problems with large deflections or large strains 
such as metal forming, fragmentation after impact, etc. In these cases an improper mesh causes serious 
decrease of accuracy or failure of computation. 

In last years an increase of interest in new type of numerical methods known as meshless methods 
was observed (Sladek, et al.,2002, Soares, et al., 2012) These methods are interesting due to their 
flexibility and ability of solving boundary value problems without predefined mesh. Computational 
model in these methods is represented by a set of nodes distributed within global domain and its 
boundary. These nodes do not have to be connected into explicitly defined elements. Information 
about relations between the nodes is theoretically not necessary before analysis. By this way some 
problems with the mesh as in FEM can be overpassed. Problems with remeshing can be overpassed by 
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adding or removing some nodes as necessary. In some methods the resultant stress fields are globally 
continuous and this simplifies consequent analyses. 

One of the areas where meshless methods are convenient to use is analysis of plate and shell 
structures. These methods are useful due to flexibility of meshless algorithms and ability of meshless 
approximation functions to obtain interpolating field with high order of continuity in simple way. In 
some cases it is possible to overcome some “locking” effects in more simple way than in FEM. 
Meshless methods are relatively new concept in computational mechanics. Compared to FEM 
formulations there are less meshless formulations available for plate and shell structures. Additional 
research and development of general meshless methods able to successfully solve various problems in 
plate structural analyses is therefore necessary. 

2. Homogenization of composite    

2.1. Homogenization techniques 

There are various homogenization methods. Direct homogenization is based on the volume average of 
field variables, such as stress, strain and energy density. Effective properties can be calculated from 
effective properties definitions. The mean and calculation of field variables can be performed 
numerically, for example by FEM, BEM and the geometry and microstructural properties can be 
generalized.   

Indirect homogenization is based on the Eshelby solution of self-deformation for one inclusion in 
an infinite matrix – the equivalent inclusion method (Eshelby, 1957). This method does not use 
averaging of the field variables and the effective properties can be obtained by deducing from the 
volume fractions and the inclusion geometry as well as the component properties. According to this 
pattern these methods were developed: self-consistent scheme (Hill, 1965), generalized self-consistent 
scheme (Christensen & Lo, 1979), differential methods (Norris, 1985), Mori-Tanaka method (Mori 
and & Tanaka, 1973). They are often used to calculate various properties of composites. But the 
generalized microstructural morphology, which is often present in real materials, cannot be handled 
out deterministically in these models. Constitutive responses of the component phases are limited and 
the estimated results with large disagreements are not reliable enough. These models cannot catch the 
effects of local non-homogeneities due to insufficient representation of microscopic stresses and 
strains.  

An alternate approach to direct and indirect homogenization is the variational method, which can 
determine the upper and lower limits of the elasticity modulus (Hashin & Shtrikman, 1962). 

A relatively new approach a homogenization of microstructures consist of mathematical 
homogenization based on a two-scale extension of the displacement field. This comes from the 
analysis of physical systems containing two or more scales (Bensoussan et al., 1978). This approach is 
good for multiphase materials, in which the natural scales are the microscopic scales, characteristic 
heterogenity or local discontinuity spacing. Macroscopic scales are characterized by the body 
dimensions. This method can be called the mathematical homogenization. 

2.1. Results of homogenization 
 
This part describes the procedure of homogenization of material properties of composites using the 
method of representative volume element (RVE). For the analysis of the material properties an own 
software was programmed in MATLAB language and a part of the solution was carried out in ANSYS 
software. The RVE consists of volume elements and is then loaded by unit strains in various 
directions. The effective lamina properties are obtained from the volume means of stress values 
obtained by loading the RVE.  

Homogenized lamina RVE consists of a fibers and epoxy matrix. The fibers are from three 
material types: carbon, glass, polyaramid. We assumed cylindrical fiber shapes and an ideal cohesion 
between the fiber and the matrix. Used carbon fibers have an industrial labeling T300 and M40J. The 
glass fiber label is EGlass and S2Glass. Polyaramide fibers have the label K49. Fiber material 
properties are listed in Tab.1. and the matrix properties ale listed in Tab. 2. (Wallenberger & Bingham, 
2010) 
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Fig. 1: Fiber arrangement in matrix a) hexagonal array b) square array 

 
Tab. 1: Material properties of fibers 

 Material of fiber 
Carbon Glass Kevlar 

T300 M40J EGlass S2Glass K49 
Young’s modulus   

Ef [GPa] 230 377 73 85,5 135.5 

Tensile strength 
[GPa] 3.53 4.41 3.2 4.6 3.5 

Poisson’s ratio 0.33 0.33 0.22 0.22 0.37 
Density ρf [kg/m3] 1760 1770 2540 2490 1450 
Fiber diameter  df 

[μm] 7 5 8 10 10 

 
Tab. 2: Material properties of matrix 

Material  Young’s 
modulus Em 

[GPa] 

 Tensile 
strength 
[MPa] 

Poisson’s 
ratio 

Density ρm 
[kg/m3] 

Shear elasticity 
modulus Gm 

[GPa] 

Epoxy 3.45 70 0.3 85.5 1.33 

 

Tab. 3: Material properties for composite with fiber volume fraction of Vf = 0.6.   

Vf = 0.6 M40J S2Glass K49 

 h s h s h s 

E1 [GPa] 227.58 227.58 52.683 52.687 82.683 82.685 

E2 [GPa] 12.831 16.71 11.607 14.334 12.121 15.301 

G12 [GPa] 5.15 5.53 4.67 4.94 4.844 5.155 

G23 [GPa] 4.737 6.967 4.3314 5.905 4.481 6.288 

v12 0.320 0.321 0.246 0.245 0.347 0.348 

v23 0.354 0.199 0.340 0.214 0.352 0.217 

 

We note that indices “h” and “s” in Tab.3 denotes  hexagonal array and square array, respectively  

The RVE dimensions are calculated for the hexagonal fiber configuration (Fig. 1a), from the 
relations (1) and for a square configuration the RVE dimensions are in Fig. 1b, calculated from the 
relations in (2).  
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where a1 is the x-direction, in this case the fiber direction, a2 is the y direction, orthogonal to the fiber 
direction, a3 in direction z, transverse perpendicular to the fiber direction. 

The basic scheme of homogenization of composite plate is shown in the Fig. 2.  

 

 
Fig. 2: Block scheme of the computation 

3. Governing equations 

Classical laminated plate theory was formulated by deriving classical plate theory for composite 
plates. In this theory the plate composes of N orthotropic layers with total thickness h. The midsurface 
of layered plate is located in the region Ω, in plane (x1, x2). Axis x3 ≡ z is perpendicular to the 
midsurface (Fig. 3). K-th layer is located between coordinates from z = zk to z = zk+1 in thickness 
direction x3. 

Deformation of the plate is described by the “Reissner-Mindlin” plate theory (Reddy, 1997). In this 
theory the shear strains in thickness direction are constant and correction coefficients are necessary for 
calculation of transverse shear forces. Spatial displacement field caused by transverse loading can be 
expressed, in terms of (Reddy, 1997) for displacement components u1, u2, u3 in the form of 
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where x =[ x1; x2]T is the position vector, wα( x1, x2, t) are rotations about plane axes and w3(x1; x2, t) is 
deflection from (x1, x2) plane. 

Linear strains are given by 
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Fig. 3: Composite plate a) geometry and displacements, b) moments and shear forces 

 
If k-th lamina is from orthotropic material, then the relation between stresses σij and strains εmn is 
expressed by the constitutive equation for stress tensor 
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with assumption of homogeneous coefficients of constitutive tensor )(k
ijmnc  for k-th lamina. 

From the equation (4) it can be seen that strains are continuous through the plate thickness. 
Discontinuous material coefficients cause the stiffness change in the interfaces and hence the stresses 
in lamina interfaces are discontinuous. 
Equation (5) for plate problems is usually written as a tensor of elastic constants of the second order. 
Constitutive equations for orthotropic material and plane stress have then the form of 
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Fig. 4: Notations for a multilayered plate 

 
Bending moments Mαβ and Qα can be expressed in integral form as 
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where κ = 5/6 in the Reisner-Mindlin plate theory, z coordinate is considered as is shown in Fig. 3. By 
substituting (6) and (4) into resultant moments and forces in (7), (8) it is possible to express bending 
moments Mαβ and shear forces Qα, α, β=1,2 for orthotropic plate in terms of displacements and 
rotations. In the case of layer-wise continuous material properties the following relations are obtained 
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For repeated indices α and β in (9) Einstein summation rule does not apply and material parameters 
Dαβ and Cαβ are given by relations 
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Plate is subjected to transverse distributed loading q(x, t). If each lamina has homogeneous density 
in thickness direction, equations of motion for Reissner linear theory for thick plates can be written in 
the form of 
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where the dot over a quantity indicates differentiations with respect to time t and indices α, β = 1, 2 
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are global inertial characteristics of the laminated plate For constant mass density throughout the plate 
thickness, we obtain 123hIM  , hIQ  . 

 
Fig. 5: Local boundaries for weak formulation, the support domain s  for MLS approximation of 

the  trial function, and support domain of weight function around node  xi,  Q is integration domain 
around given node. 

 
In MLPG method the local weak form is assembled on local subdomain ΩQ , which is a small domain 
for each node within the global domain (Atluri, 2004). These local subdomains overlap each other and 
cover the whole global domain Ω, Fig. 13. Local weak form of the governing equations (12) and (13) 
for i

Q
ix  xi can have the form of 
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where *
w  and *w are weight and testing function, respectively. Applying the Gauss divergence 

theorem to Eqs. (15) and (16) one obtains 
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where i
Q is boundary of local subdomain, )()()( xxx  nMM   is the normal bending moment 

and nα is the outward normal on the boundary i
Q . Local weak forms (17) and (18) are starting 

points for deriving local boundary integral equations on the basis of proper test function. Unit step 
function is chosen in each subdomain for test functions )(* xw  and )(* xw  
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Then the local weak form (15) and (16) transforms on the following local integral equations 
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where wα(x; t) is the trial function corresponding to rotations , α = 1, 2, the trial function w3(x; t) 
corresponds to the transverse displacement. These trial functions are assembled in MLS approximation 
over nodes in local subdomain around the point x. 

4. Numerical implementation MLPG for composite plate 

In general, a meshless method uses a local interpolation to represent the trial function with the values 
(or the fictitious values) of the unknown variable at some randomly located nodes (Sladek et al., 
2005). To approximate the distribution of the generalized displacements (rotations and deflection) in 
Ωx over a number of randomly located nodes {xa}, a = 1, 2, ... n, the MLS approximant ),( twh

i x  of 
),( twi x is defined by 
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where wh = [ hhh www 321 ,, ]T, a is shape function of MLS approximation corresponding to node xa.  The 
directional derivatives of w(x,t) are approximated in terms of the same nodal values 
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where  xa
k,  is partial derivative of shape function  xa  according to direction k = x1, x2. 

Substituting the approximation (23) into the definition of the bending moments (9) and then 
using Mα(x; t) = Mαβ (x; t) nβ (x) , one obtains  

 aa
N

a

aa
N

a

aa
N

a

*

1

*
2

1
2

*
1

1
1 )()()()()( wxBxNwxBNwxBNxM  



   (24) 

where vector a*w  = [ aw*
1ˆ ; aw*

2ˆ ]T , the matrices Nα(x) are related to the normal vector n(x)  

on s by  
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and the matrices a
B  are represented by the gradients of the shape functions as 
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The influence of the material properties for composite laminates is incorporated into Cαβ and D αβ, 
defined in equations (10). Similarly one can obtain the approximation for the shear forces  
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where Q(x) = [Q1(x) ; Q 2(x)]T and  
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Then, insertion of the MLS-discretized moment and force fields (26) and (29) into the local integral 
equations (17) and (18) yields the discretized local integral equations     
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where  M~ (x) represent the prescribed bending moments on i
QM and 
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Equations (29) and (30) are considered on the subdomains adjacent to the interior nodes xi as well as 
to the boundary nodes on i

QM . 

For the source point xi located on the global boundary   the boundary of the subdomain i
Q  is 

decomposed into into i
QL  a i

QM ( part of the global boundary with prescribed bending moment), Fig. 5. 
It should be noted here that there are neither Lagrange multipliers nor penalty parameters introduced 
into the local weak-forms i

QM (part of the global boundary with prescribed rotations or displacements 
can be imposed directly, using the interpolation approximation (24) 
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where )(~ ixw  is the generalized displacement vector prescribed on the boundary i
QM . For static loads 

following terms are zero  
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Then, insertion of the MLS discretized moment and force fields into local integral equations into (29) 
and (30) we get the discretized local integral equations in the form 
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Collecting the discretized local boundary-domain integral equations together with the discretized 
boundary conditions for the generalized displacements, one obtains a complete system of algebraic 
equations for calculation strain, stress and displacement fields. 

5. Numerical example 

In this section, numerical results are presented for laminated plates under a mechanical load. In 
order to test the accuracy, the numerical results obtained by the presented method are compared with 
the results provided by the FEM softwares ANSYS and ABAQUS. 

Results obtained from own software were compared with reference values, which are in essence 
the mean values from values obtained from ANSYS and ABAQUS. The averaged percentage error 
was calculated from the following equation 

      



N

a

aref
N

a

aMLPGaref xuxuxuAPE
1

2

1

2 )(/)()(100  (35) 

where N is total number of nodes in given domain, uref(xa) is the reference value in node xa, uMLPG(xa) 
is value calculated by means of MLPG in node xa.  

 
Fig. 6: Dimensions of plate and location of points for compare of results 

 
Clamped and simply supported square plates are analysed. We consider composite plates with the 

dimensions Lx = 0.24 m and Ly = 0.2 m, Fig. 6. Is composed from six lamina with thickness Δz = 
0.00025 m, total thickness of plate is h = 0.0015 m. 
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Material of the analyzed plate is EGlass_vf06. Maximum deflection of the plate is 
, 3--2.463e,

max3 mw MLPGCC   the reference value is  . 3--2.453e,
max3 mw refCC  Error in the point of maximum 

deflection is %.41.03 CC
werr  The averaged percentage error is  2.37%3 

CC
wape  for computed 

deflections 

 
Fig 7: Comparison of deflection  a)clamed plate, b) simply supported plate  

 
Maximum deflection for simply supported plate is , 3-8.272e- ,

max3 mw MLPGSS  the reference value for 
this degree of freedom is . 3-8.241e ,

max3 mw refSS   Error in the point of maximum deflection is 
 0.38%.3 SSup

werr The averaged percentage error is 2.25%. 3 SSup
wape  Deflections in Fig.7 is shown for 

y = 0.5Ly, Fig. 6. 

The average percentage error in particular analyses is affected mainly by differences near the plate 
boundaries since these values are very small. And low reference values cause higher percentage errors 
as in points near the center of the plate.  In the direction of the center of the plate the percentage 
differences with regard to the reference values decrease. 

In this part course of deflections, strains and stresses in through the thickness direction are illustrated 
and values of these variables are listed in tables. Values are compared with reference results from 
FEM analyses. In each table absolute values of percentage differences with regard to the reference 
values are also listed. Plate dimensions are 0.24 x 0.2 m.  

 
Fig. 8 : Course of strains through the thickness of plate from Glass_vf04, a) strain 11 , b) strain 22  

 
In Fig. 8 is described course of deformations 11 and 22 at point of maximum deflection of plate from 
material EGlass_vf04 and comparison of results are given in Tab. 4. In Fig. 9 is described course of 
stresses 11  a 22  at given point of plate from center of corresponding layer and values are given in 
Tab. 5. 
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Fig. 9: The computed stress values at the center of layers EGlass_vf04, a) 11 , b) 22  

 
Tab. 4: Comparison of deformations  11  a 22  from MLPG and FEM, EGlass_vf04 

layer 1 2 3 4 5 6 
MLPG

1  [-] 4.85e-4 2.90e-4 0.969e-4 -0.969e-4 -2.90e-4 -4.85e-4 

REF
1 [-] 4.74e-4 2.84e-4 0.948e-4 -0.948e-4 -2.84e-4 -4.74e-4 

|err| [%] 2.3 2.3 2.3 2.3 2.3 2.3 
MLPG
22 [-] 9.10e-4 5.46e-4 1.82e-4 -1.82e-4 -5.46e-4 -9.10e-4 

REF
22  [-] 8.84e-4 5.31e-4 1.77e-4 -1.77e-4 5.31e-4 -8.84e-4 

|err| [%] 2.95 2.95 2.95 2.95 2.95 2.95 
 

Tab. 5: Comparison of stresses  11  a 22  from MLPG and FEM, Eglass_vf04 

layer 1 2 3 4 5 6 
MLPG
1  [-] 7.76e+6 3.14e+6 3.43e+6 -3.43e+6 -3.14e+6 -7.76e+6 

REF
1 [-] 7.57e+6 3.07e+6 3.35e+6 -3.35e+6 -3.07e+6 -7.57e+6 

|err|  [%] 2.58 2.52 2.37 2.37 2.52 2.58 
MLPG
22 [-] 10.20e+6 17.91e+6 1.50e+6 -1.50e+6 17.91e+6 -10.20e+6 

REF
22  [-] 9.92e+6 17.4e+6 1.46e+6 -1.46e+6 -17.4e+6 -9.92e6 

|err|  [%] 2.85 2.94 2.88 2.88 2.94 2.85 

6. Conclusions 

The MLPG method was applied to analysis of laminated composite plates under static loadings. The 
numerical results confirm the fact that MLPG method is a good tool for analysis of composite 
structures. It is a reliable method after sufficient setting of parameters such as order of numerical 
integration, size of the integration domain, support domain for weight function, etc. 

Errors in strain and stress evaluation can have several sources. Accuracy of the meshless methods 
is affected by several factors such as rounding errors in approximation or rounding errors caused by 
the numerical integration. The above mentioned errors become evident in differences between the 
reference and computed values. Both FEM softwares compute strain or stress values at the middle 
surface of the layer as the arithmetic mean of strain or stress values from top and bottom surface of the 
layer. 
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