
ON ADVANCE IN LEVELING PROCESS OF LONG PRODUCTS 

F. Sebek*, J. Petruska**, T. Navrat*** 

Abstract: This paper deals with advance in numerical simulation of leveling process of long products. 
The main task is useful setting of roller leveling machine to minimize residual curvature of a particular 
curved product. The problem is solved by program, using software MATLAB and fast algorithm which 
is based on the Finite Element Method (FEM) and its fundamental equation is set up. The curved material 
passes through laterally offset rollers with repeated elasto-plastic bending respecting the Eulerian 
approach. This results in convenient redistribution of residual stress which brings down the curvature 
of the product. The solution of this problem is complicated by high inherent nonlinearity and instability 
or sensitivity caused by cyclic plasticity of considered material. The problem is solved and useful setting 
is found by iterative process, based on input measured geometrical data and given material 
characteristics. 
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1. Introduction 

Current requirements of industry call for more accurate operations and efficient technologies. 
Nowadays, there are high demands by engineers, designers or technologists in one side 
and by consumers or customers in the other. Because of previous facts and continuous development 
of manufacturing technology the emphasis is placed on quality of used materials and semiproducts. 
One of the most important features of quality of long products can be its curvature. In a lot 
of manufacturing operations there is necessity of using straight bars so we use roller leveling 
machines. 

The leveling process is based on the elasto-plastic bending, as discussed in Petruska et al. (2012), 
Sebek (2012) and others, which is repeated on every roller. In our case we are talking about seven 
rollers (Fig. 1) but there is commonly used nine or eleven rollers and for thin materials up to twenty 
one rollers. The elasto-plastic bending provides redistribution of initial residual stress which brings 
down curvature of long product. The aim of our analysis of leveling process is to determine 
and examine how to set positions of rollers to decrease curvature of long product at possible minimum 
by convenient redistribution of residual stress using cyclic plasticity of considered material. 

The solving process of this problem is highly unstable and sensitive due to its inherent nonlinearity 
caused by elasto-plastic bending and therefore cyclic plasticity of material (Nastran & Kuzman, 2003 
and Mutrux et al., 2011). Because of that fact the usage of iterative algorithm is obvious. 
It is necessary to obtain satisfactory convergence using advanced solvers of nonlinear problem 
as discussed further. 

Historically, one of the first algorithms for solving the problem of long products’ leveling 
are based on empirical and theoretical knowledge of materials processing technology field like 
Tokunaga (1961) and others. Later, there is a significant approach with development of computational 
technology along with the use of FEM. There are a lot of simple and quick analyses in one hand 
but due to increasing computer power more complicated models are used as in Schleinzer & Fischer 
(2001), Biempica et al. (2009), Zhao et al. (2011), Li et al. (1999) or Wu et al. (2000) in terms 
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Global tangential stiffness matrix KT,i−1 is done by folding and adding all element stiffness matrices 
so the square matrix is formed. 
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After solving Eq. (1) we can determine curvatures in all nodes by Eq. (4). 

   ijjijij xw ,,, δB   (4) 

In the previous equation stands out Bj,i(xj) as curvature approximation matrix which is estimated 
by Eq. (5) where xj is longitudinal coordinate of each element. 
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There is also δj,i matrix described by Eq. (6). It has four degrees of freedom and contains 
displacements and slopes of each element. Thus, each element has two nodes. 

  T,1,1,,, ijijijijij wwww  δ  (6) 

Now we can estimate curvature increments in all nodes by following Eq. (7). 

 ijijij www ,1,,   (7) 

Next, the strain and stress distribution is identified with considering the Eulerian approach when 
material flows through beam elements which are fixed in the space along the leveling machine. Total 
strain increment is defined by Eq. (8) for every layer which the cross section is cut into (Fig. 2) where 
z is vertical coordinate and d is diameter of the bar. Then, the stress is calculated by Eq. (9). An initial 
distribution of these values can be concerned with initial curvature of the bar. 

   zwz ij
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ij  ,,  (8) 
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There is a condition tested whether the actual yield stress is reached in every layer respecting 
kinematic hardening rule and loading history. If the condition is positive, the stress in Eq. (9) 
and actual yield stress has to be modified. Then, modified stress distribution is illustrated at Fig. 2. 
Next, we can estimate an elastic and plastic component of the total strain, see Owen & Hinton (1980). 

z

d
k

 
Fig. 2: Illustration of imaginary cutting the cross section 

into layers and stress distribution (Sebek, 2012) 

By stress distribution according to the one at Fig. 2, where plastic deformations occurred, we can 
estimate modified bending moment with Eq. (10) where ψ represents the cross section. 
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Now we shall form new global matrix of equivalent nodal forces using element equivalent nodal 
forces matrices at Eq. (11). 
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Due to plastic deformations we have to compute modified element stiffness matrices by Eq. (3) 
with modified beam flexural rigidity (E · J)j,i using Eqs. (12) – (14) in every layer where the actual 
yield stress has been reached with respecting the kinematic hardening rule and loading history. When 
the previous condition is negative we put Em in Eq. (13) equal E (Owen & Hinton, 1980). 
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Variable H in Eq. (12) is the hardening parameter. After that procedure, we can complete new global 
stiffness matrix for next iteration if there was any. 

At the end of each iteration, convergence criteria are tested. They are based on global matrix 
of displacements and slopes by Eq. (15), global matrix of residual nodal forces by Eq. (16) or both. 
In Eqs. (15) and (16) symbols θu and θf are required deformation and force tolerances, respectively. 
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The denominator of a fraction in Eq. (16) represents the sum of reaction forces inferred 
by the intermeshing of rollers, that is the interaction between rollers and leveled material. 

Finally, if convergence criteria are satisfied, the procedure is stopped. In the opposite case the iteration 
number is increased by one and the procedure is returned back to Eq. (1) and repeated. 

Previous procedure corresponds to the one where only longitudinal move is included. 
The algorithm can be easily modified for considering the rotation of bar around its axis as well. 
It can be done by involving strain increment at Eq. (17) caused by rotation. Then, total strain 
increment is a sum of the strain increment caused by translation in Eq. (8) and rotation. 

 zw ij
rot

ij  ,,  (17) 

Increment of z coordinate caused by rotation in Eq. (17) is illustrated in Fig. 3. 
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Fig. 3: Dimensioned circular cross section for cross roll straightening 
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There is an example of residual stress after cross roll straightening in Fig. 4. 

 

Fig. 4: Distribution of residual stress after leveling process 

We are developing and debugging algorithm considering rotation of the bar which enables 
the simulation of cross roll straightening. More details will be presented in the future. 

3. Verification example 

For verification of our algorithm we used results published in Nastran & Kuzman (2002) where 
the seven roller leveling machine is also used. In this case we are considering the leveling without 
rotation of the bar. There is a different design of leveling machine as shown at Fig. 5 in Nastran 
& Kuzman (2002). In this case rollers A, C, E and G are fixed and rollers B, D and F are individually 
vertically adjustable. Nevertheless, we easily modified our program so it agrees with 
the one in Nastran & Kuzman (2002). 

Values used in a computation: 

- diameter 2.1 mm 

- yield stress 530 MPa 

- Young’s modulus 210000 MPa 

- initial curvature 2.5·10−3 mm−1 

- intermesh of roller B 0.4 mm 

- intermesh of roller D 0.3 mm 

- intermesh of roller F 0.2 mm 

- pitch 25 mm 

 

A

B D F

C E G

 
Fig. 5: Illustrative scheme of leveling machine used in 

verification (Nastran & Kuzman, 2002) 

Analyzed variables along the bar length are depicted in following Figs. 6 – 13. Deflection, slope, 
curvature and bending moment from our program and from Nastran & Kuzman (2002) are compared 
in these figures. We are even able to compute the progress of shear force during leveling process along 
the curved bar as shown in Fig. 14. 
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We can note that progress of variables in dependence to distance of moving leveled 
bar corresponds to progresses in Nastran & Kuzman (2002) with satisfactory matching. But they 
cannot be identically the same because of using a bit different material model by Nastran & Kuzman 
(2002) when the yield stress is not constant during leveling process due to cyclic softening. 
We do not involve this fact in our program as well as hardening and parameter which determines 
the smoothness of the transition from the elastic to plastic region. So that is why we used the value 
of 530 MPa for yield stress instead of 560 MPa as in Nastran & Kuzman (2002) because of cyclic 
softening. 
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Fig. 6: Progress of deflection due to intermesh of rollers by our program 

 

Fig. 7: Progress of deflection due to intermesh of rollers (Nastran & Kuzman, 2002) 
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Fig. 8: Progress of slope by our program 

 

Fig. 9: Progress of slope (Nastran & Kuzman, 2002) 
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Fig. 10: Progress of curvature by our program 

 

Fig. 11: Progress of curvature (Nastran & Kuzman, 2002) 
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Fig. 12: Progress of bending moment by our program 

 

Fig. 13: Progress of bending moment (Nastran & Kuzman, 2002) 
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Fig. 14: Progress of shear force along the leveled bar by our program 
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4. Conclusions 

The user friendly program with fast algorithm for solving the leveling process of long products 
has been developed. The principle of the algorithm is based on FEM and its fundamental equation 
respecting Newton-Raphson method for solving nonlinear problems. There are beam elements used 
with considering the Eulerian approach when material moves through leveling machine. Whole 
algorithm of the suggested program is described in detail. Verification example is shown as well. 

The modular structure of presented program allows enlargement of another subroutines 
such as the one involving rotation of the bar around its axis, plate and tensile leveling, cross roll 
leveling of tubes, etc. The principal idea when considering rotation of the bar, i.e. cross roll 
straightening, is presented as well and it is being prepared. 

Other improvements can be included as well as more precise material model especially of cyclic 
hardening or softening, an influence of shear force to deflection of leveled product or location 
of contact point between rollers and moving material during leveling process and rate of its effect. 

Our tendencies are strongly aimed to practical applicability of results in an industrial field 
and further progress and advances will be presented in a future. 
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