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THE ANALYSIS OF THE BOUNDARY CONDITIONS FOR THE
COMPRESSIBLE GAS FLOW AS A MODIFICATION OF THE
RIEMANN PROBLEM

M. Kyncl, J. Pelant

Abstract: We work with the system of equations describing non-stationary com-
pressible turbulent fluid flow (2D,3D), i.e. the Reynolds-Averaged Navier-Stokes
(RANS) equations, and we focus on the numerical solution of these equations and
on the boundary conditions. Some boundary conditions (i.e. fixed, linearized) bring
non-physical errors into the solution, which may lead to the wrong results. We use
the analysis of the Riemann problem for the construction of the boundary condi-
tions in order to match the experimental data. Within this problem we show, that
the unknown one-side initial condition can be partially replaced by the suitable
complementary condition. We suggest such complementary conditions (by the pref-
erence of total quantities, pressure, temperature, velocity, condition at the diffusible
barrier,...) in order to match the physically relevant data. Algorithms were coded
and used within our own developed code (using the finite volume method) for the
solution of the Euler, NS, and the RANS equations. Numerical examples show su-
perior behavior of these boundary conditions.

Keywords: compressible gas flow, the Riemann problem, boundary conditions.

1. Introduction

The physical theory of the compressible fluid motion is based on the principles of conservation
laws of mass, momentum, and energy. The mathematical equations describing these fundamen-
tal conservation laws form a system of partial differential equations (the Euler Equations, the
Navier-Stokes Equations, the Navier Stokes Equations with turbulent models). In this work we
focus on the numerical solution of these equations. The correct design of the boundary con-
ditions plays also an important role in the numerical modeling of the processes involved. We
choose the well-known finite volume method to discretize the analytical problem, represented
by the system of the equations in generalized (integral) form. To apply this method we split the
area of the interest into the elements, and we construct a piecewise constant solution in time.
The crucial problem of this method lies in the evaluation of the so-called fluxes through the
edges/faces of the particular elements. In order to compute these fluxes, various methods can
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be used. One of the most accurate method (and perhaps the most accurate method) is based on
the solution of the so-called Riemann problem for the 2D/3D split Euler equations. Unfortu-
nately, the exact solution of this problem cannot be expressed in a closed form, and has to be
computed by an iterative process (to given accuracy). Therefore this method is also one of the
most demanding. In our work we decided to use the analysis of the exact solution also for the
discretization of the fluxes through the boundary edges/faces. The right-hand side initial condi-
tion, forming the local Riemann problem, is not known at the boundary faces. In some cases (far
field boundary) it is wise to choose the right-hand side initial condition here as the solution of
the local Riemann problem with given far field values, which gives better results than the solu-
tion of the linearized Riemann problem, see Dolejsi (2006). Another boundary condition based
on the exact Riemann problem solution, simulating the impermeable wall on move, was shown
in (TORO, 1997, pages 221-225), where the right-hand side initial condition is constructed in
a special way, in order to obtain the desired solution. We show, that the right-hand side initial
condition for the local problem can be partially replaced by the suitable complementary condi-
tion. This idea was introduced by RNDr. Jaroslav Pelant, CSc. in PelantWork (1996-2000). In
this work we analyze the modified local problems equipped with various complementary con-
ditions. We construct own algorithms for the solution of the boundary problem, and we use it
in the numerical examples.

2. The system of equations

We consider the conservation laws for viscous compressible turbulent flow with the zero outer
volume forces and heat sources in a domain 2 € R", and time interval (0, T"), with T > 0. The
system of the Reynolds-Averaged Navier-Stokes equations in 3D has the form

dw = Of (W) = OR,(w, Vw) |
E+2—:Zﬁ— inQr =Q x (0,7). (1)

0x, T
s=1

Here 11, z, x5 are the space coordinates, ¢ the time. w = w(z,t) = (o, ov1, ovo, ov3, E)T
is the state vector, z € (2, t denotes the time, () is called a space-time cylinder, f, =
(0vs, 0Vsv1 + 51D, VsV + 52D, 0UsV3 + Os3p, (E + p)vs)T are the inviscid fluxes, d;; is the
Kronecker delta, v = (vy, vs, Ug)T denotes the velocity vector, o is the density, p the pressure, ¢
the absolute temperature, E' = ge + 3 ov? the total energy, R, = (0, 741, To2, T3, Sy ey +
C100/0z)T are the viscous fluxes, p is the dynamic viscosity coefficient dependent on temper-

. . . . + Sij 1+
ature, o 1s the eddy-viscosity coefficient, and 7;; = (et por)Si, 2 . 7 J , where
(4 pr)Sij — 50k, i =]
—2(90u _ Ova _ Ous — Ou | Ovy — Ov | Ous
Sll - 3 (26951 Oxo 6933) ’ 512 — Oxo + o1’ 513  Oxs + oz’
= —2(_0u Qug _ vz 5 = Ova | Ouz
S21 = Sz, Sa2 = 3 < 0x1 + 26z2 8J13> , a3 = ox3 + Oz’
_ _ _ 2 ov Ovg ovs
S31 = S13, S32 = Sa3, S33 = 3 <—%—%+2%> .

For the specific internal energy e = ¢, we assume the caloric equation of state e = p/o(y — 1),
¢, 1s the specific heat at constant volume, v > 1 is called the Poisson adiabatic constant. Further
C}. is the heat conduction coefficient C), = ({;—T + ]’i—i)cv’y, and P, is laminar and P, is turbulent

Prandtl constant number.

In this work we assume the system (1) equipped with the two-equation turbulent model k£ —w
(Kok), described in Kok (2000). The effective turbulent viscosity is pur = ok /w.
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where k the turbulent kinetic energy and w the turbulent dissipation are functions of time ¢ and
space coordinates 1, xo, x3. The production terms P}, and F,, are given by formulas

av_H_@ +Tav+Ta +7_8 +Tav+Ta +7_8 +T8U3
B, 12(‘92 21a 2282 1383 31a 2383 3282 2w )’

P, =

where functions 7 are defined in (1) with 4 = 0.

P, 2 2
P, = =%, where a, = gﬁ‘% and oy, = 2, 7 =0.09, 5 = ém 0, = 0.5,k =041,

The cross-diffusion term Cp is defined as Cp = 04 2 max{ 88a:k1 59;1 + %g—;‘; + gfg g;; 0},

where o4 = 0.5 is constant.

We assume that the partial derivatives exist, such that the differential formulation (1) makes
sense. Within the numerical solution of this problem (1),(2),(3) we usually consider the equa-
tions in the more general integral form, which allows the discontinuities in the solution. It is
well known that the classical Navier-Stokes equation for three-dimensional incompressible vis-
cous flow is invariant under Galilean transformations, see (Feistauer, 1993, page 69). We can
choose a new Cartesian coordinate system (Z1, &5, Z3) with the origin is at the point &, we write

T T n ny N2 N3
.CE'Q = @0 ) + 5’, with @0 = o = 01 02 O3 . (4)
3 T3 b pP1 D2 D3

The transformation of the state vector w yields the state vector q in the new coordinates

1 0 0 0 0 1 0 0 0 0

q=Qw, 0 ng ny ng 0 0 ng op pp O
Q=10 o0 00 03 0 [, Q7 =]0 ny 0 po 0 (5)

w=Qgq, 0 p1 p2 p3s O 0 ng o3 ps O

0 0 0 0 1 00 0 0 1
The vectors 1, 0, p must have the properties [n| = |o| =1, m-o0=0, p=mnxo. We
can choose the vector o = (01,09,03) such that n - 0 = 0, |o| = 1. And then the vector

p = (p1, p2, p3) is determined by p = n x o. The axis Z, points in the direction of the vector
o, and the axis 3 in the direction of the vector p.

332



The Euler Equations
Ommiting the vicsous terms in (1) we get the system of the Euler equations

ow = Of .(w) .
=y + 2 o, 0 inQr=9Qx(0,7). (0)

The equations (6) represent a system of hyperbolic partial differential equations. The system of
the Euler equations is rotationally invariant (see e.g. (Feistauer, 2003, page 108)).

3. FVM discretization of the problem

According to (Wilcox, 1998, page 365), the coupling between the turbulence-model equa-
tions (2),(3) and the mean-flow equations appears to be relatively weak. Therefore we solve
the systems sequentially. Here we describe the so-called finite volume discretization of the
system (1) in the domain €2, the discretization of the system (2),(3) can be done analogi-
cally, see Kyncl,Pelant (2012). By (2, let us the denote the polyhedral approximation of 2.
The system of the closed polyhedrons with mutually disjoint interiors D), = {D,};cs, where
J C Z* = {0,1,...} is an index set and h > 0, will be called a finite volume mesh. This
system D, approximates the domain 2, we write Q, = Uie ;D;. The elements D; € D, are
called the finite volumes. For two neighboring elements D;, D; we setI';; = 0D; N 0D; = I';;.
Here we will work with the so-called regular meshes, i.e. the intersection of two arbitrary
(different) elements is either empty or it consists of a common vertex or a common edge or a
common face (in 3D). The boundary 0D; of each element D; is 0D; = UFijGFDi I';;. Here the

set I'p, = {I';;;I";; C OD;} forms the boundary 0D,. By n;; let us denote the unit outer normal
to 0D; on I';;. Let us construct a partition 0 = ¢, < ¢; < ... of the time interval [0, 7] and
denote the time steps 7, = tx1 — tr. We integrate the system (1) over the set D; X (tx, txi1)-
With the integral form of the equations we can study a flow with discontinuities, such as shock
waves, too.

tet1 tht1 B ot ajR
/ / d:):dt+/ / Z 98 (W) gy — / / Z O (w, V) 4o gy 7
tr tr 6%5 D; s—1
Using the Green’s theorem on D it is

/231;5% / Z.fs )ns dS, /ZMR V'w /a ZIR w, Vw)n, dS.

7bsl 151 Dlsl

Here n = (n, ng, ng) is the unit outer normal to 0 D;. Further we rewrite (7)

tr4+1
/Di(w(m,tkﬂ) (2, 11) dx+/ S / Z Fu(w) — Ry(w, Vaw)) (n)s dS dt =0 (8)

b 1yerp, 'l s=1

We define a finite volume approximate solution of the system studied (1) as a piecewise constant
vector-valued functions w¥, k = 0,1,..., where w¥ is constant on each element D;, and t;, is
the time instant. By w’ we denote the value of the approximate solution on D; at time t;. We
approximate the integral over the element D; as | D, w(x,ty) dv ~ | D;|w?. Further we proceed
with the approximation of the fluxes. Here we show the numerical flux based on the solution of

the Riemann problem for the split Euler equations (shown later in Section 4.). By 'wlFJ let us
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denote the state vector w at the center of the edge I';; at the time instant ¢;, and let us suppose
'wlrz,j is known. Evaluation of these values will be a question of the further analysis, here we use

them to approximate the integrals with the one-point rule

|3 fwla ). dS = Tl 3 1. Gk, ). ©)

i s=1

3 3
/F > Ry(w(x, ), Vw(w,0))(ni;)s dS ~ T Y Ro(wh,,, Vwr, ) ().
ij s=1 s=1
Here lerij denotes the Vw at the center of the edge I';; at time instant ¢;. Now it is possible
to approximate the system (8) by the following explicit finite volume scheme

3

IDl(w —wh) + 7 |Fij|z(fs(wlliij)ns—Rs(wllii]_,lefiij)ns>:O(lO)

FijerDi s=1

With this finite volume formula one computes the values of the approximate solution at the time
instant ¢5 1, using the values from the time instant ¢;, and by evaluating the values w{ig at the
faces I';;. In order to achieve the stability of the used method, the time step 7, must be restricted
by the so-called CFL condition, see Feistauer (2003). The crucial problem of this discretization

lies with the evaluation of the face values wl’iij and its spatial derivatives leli,-]-' Or one

deals with the problem of finding the face fluxes H(w;}, w", n;;). Here, for the simplicity,

we work with the explicit scheme. The discretization via the implicit scheme can be found
in Kyncl,Pelant (2012). Further (Section 3.1.) we show the discretization of the face values,
which is the aim of this paper. For the discretization of the spatial derivatives it is possible to
use the procedure shown in Kyncl,Pelant (2012).

Let us show the approximation of these spatial derivatives on the function denoted by f =
f(zx). The values of the function f on each element D; are known. We approximate the values
of this function at all mesh points P; as the weighted average over all volumes D; with vertex
P
f(P) _ ZDi;PjeaDi f|Di |Dz|

J Dzl

ZDi;Pj €dD;
By the notation ), . p,cop, We mean the summation over all volumes D; with the vertex P}, and
by |D;| we denote the volume of the element D;. Further we apply the boundary condition for
f(P;) at the points P}, laying on the boundary of the studied area. For example we prescribe the
zero velocity and given temperature at the points laying on the boundary segment representing
the wall. Now let us choose a face I';;. The values of the function f are known at its vertices P,
and at the centers C7, C; of the adjacent elements D;, D;. It is possible to use n-point rule to
approximate the spatial derivatives of the function f at the face I';;. For the face with m vertices,
it is possible to use the m + 2 point rule (the face vertices P, are numbered counter-clockwise,
looking from C'y)

V_>f ) % {TTZ])’FZ]| (f(CJ) B f(CI)) n Zf(PZ)PI*PH 2>< C]CJ} . (11)
=1

_ -1, I >1 Il+1, I<m ——
Here [ :{m’ 11 z+={ L ;. sand K| =Ty (nz; - C1C7).
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At the boundary face I', where the function f is given by the value f(I"), the V f can be approx-
imated as

VI =3 () - JC) T, b=l

with h being the distance of the volume center C to the face I', CT is the center of the face I'.

3.1. Face values / Euler fluxes discretization

To approximate the face values w'lij at time instant ¢; we solve the simplified system (12) in
the vicinity of the face I';; in time with the initial condition formed by the state vectors w? and
w;?. Using the rotational invariance of the Euler equations, the system (6) is expressed in a new
Cartesian coordinate system 1, Z», Z3 with the origin at the center of the gravity of I';; and with
the new axis 7 in the direction of n = (nq, ns, n3), given by the face normal n = n;;.

X2 X2

Figure 1: Coordinate transformation for the inner and boundary edges in 2D (inner edge left).

Then the derivatives with respect to z», T3 are neglected and we get the so-called split 3D Euler
equations, see (Feistauer, 2003, page 138):

dq afl(‘l)
— 4+ ——===0. 12
ot o (12
The values wf and w? adjacent to the face I';; are known, forming the initial conditions
q(71,0) =g, =Quwj, 7 <0, (13)
q(71,0) = qp = Qwj, 7 >0. (14)

The transformation matrix Q is defined in (5). In this work we will refer to these initial condi-
tions as to the left-hand side initial condition (13) and the right-hand side initial condition (14).
The problem (12), (13), (14) has a unique “solution” in (—o0, c0) x (0, c0), the analysis can be
found in (Feistauer, 2003, page 138), we will show the analysis of this problem later in Section
4.. Let qps(qy, qp, T1,t) denote the solution of this problem at the point (Z1,¢). We are inter-
ested in the solution of this local problem at the time axis, which is the sought solution in the
local coordinates qr,, =4 rs(@r, QR 0,t). The backward transformation (5) of the state vector
qr,, into the global coordinates is wlliij = Q'qr, = Q' qps(Q wf,Q wk,0,t). The de-
scribed process of finding the face values w’fiij is independent on the choice of the vectors o, p,

determining the transformation matrix Q defined in (5), see Kyncl (2011).

At the boundary faces (edges) we work with the problem (12) equipped with only one-side
initial condition (13). The problem of the boundary condition is to choose the boundary state

q(0,t) =gp, t > 0. (15)
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such a way that the system (12),(13),(15) is well-posed, i.e. it has a unique solution (en-
tropy weak) in the considered set Qg = {(Z1,t);Z; < 0,¢ > 0}. It is possible to show, that
by adding properly chosen equations into the system (12),(13) it is possible to reconstruct
the boundary state gz such that the system (12),(13),(15) has a unique solution in 25, see
Kyncl (2011).We will refer to these added equations as to complementary conditions. Several
choices of the complementary conditions will be discussed further.

4. The Riemann problem for the split Euler equations

For many numerical methods dealing with the two or three dimensional equations, describing
the compressible flow, it is useful to solve the split Riemann problem. Here we will follow in
3D, analogously it is possible to proceed in 2D. It is the system of the equations (12), equipped
with the initial conditions (13),(14)

8q afl(q> — 0 q(i,l 0) :{ qL? jl < 07

‘Split” means here that we still have 5 equations in 3D, but the dependence on 5,23 is ne-
glected, and we deal with the system for one space variable ;. The system (12) is considered
in the set ), = (—00,00) X (0, +00). The solution of this simplified system is useful when
dealing with the inviscid fluxes within various numerical methods.

The solution of this problem is fundamentally the same as the solution of the Riemann prob-
lem for the 1D Euler equations, see (Feistauer, 2003, page 138). In fact, the solution for the
pressure, the first component of the velocity, and the density is exactly the same as in one-
dimensional case. It is a characteristic feature of the hyperbolic equations, that there is a possi-
ble raise of discontinuities in solutions, even in the case when the initial conditions are smooth,
see (Feistauer, 1993, page 390). Here the concept of the classical solution is too restrictive,
and therefore we seek a weak solution of this problem. To distinguish physically admissible
solutions from nonphysical ones, entropy condition must be introduced, see (Feistauer, 1993,
page 396). By the solution of the problem (12),(13),(14) we mean the weak entropy solution
of this problem in (). The analysis to the solution of this problem can be found in many books,
1.e. Feistauer (2003), Feistauer (1993), TORO (1997). The general theorem on the solvability
of the Riemann problem can be found in (Feistauer, 2003, page 88). Here we summarize, that
the problem has a unique solution for certain choice of the initial conditions. This solution can
be written for ¢ > 0 in the similarity form q(7,t) = q(%,/t), where q(z1/t) : IR — IR® ((Feis-
tauer, 2003, page 82)). Now we will show the form of the possible solution ¢ = (71, t) of the
Riemann problem (12),(13),(14). The solution is piecewise smooth and its general form can be
seen in Fig. 2, where the system of half lines is drawn. These half lines define regions, where
q is either constant or given by a smooth function. Let us define the open sets called wedges
Qry Qs Qr, ur, Qum, g, see Fig. 2. We will refer to the set 2y, as to the left wave, and
the set (2 Will be called the right wave. The solution in 27, .7, g, (2g is constant (see
e.g. (Feistauer, 2003, page 128)), while in (257, and in (2g7p it is continuous. Let us denote
q|QL =4dqy, q|Q*L =4, q|Q*R = 4.p; Q‘QR = d4p; q|QHTL =dygrr, q|QHTR =d4durr-

It is more convenient to use the vector of primitive variables (g, u, v, w, p) rather then the vector
of conservative variables (o, ou, ov, pw, E) in solving the Riemann problem. The exact solution
of the Riemann problem has three waves in general, illustrated in Fig. 2. The wedges €1, and
(2,1, are separated by the left wave (either 1-shock wave, or 1-rarefaction wave). There is a
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i & - - .
T_SHL STL—T it T Ux T_STR SHR_T
QHTL Q*L / Q*R QHTR Qp = {(#1,1); T"Tl < sui t> 01,
/ Qure = {(Z1,); sgL < G- < sTs t > 03,
QL QR Qe = {(@1,); 5TL<_ITl<u,(; t > 0},
/ Qup = {(F1,1); ux < F- < s7R; t >0},
/ Qurr = {(81,1); sTR < G- < spr; t > 0},
Qr = {(Z1,t); sgr < Tle t > 0}.
0 ¥

Figure 2: Structure of the solution of the Riemann problem (12),(13),(14)

contact discontinuity between the regions (,; and (), z. Wedges (2,r and {2y are separated
by the right wave (either 3-shock wave, or 3-rarefaction wave). The solution for the primitive
variables can be described as follows:

(Q,U,U,w,p)|QL = (QL;uLa’ULawlan)a (Q7U7U7w7p)|Q*R = (Q*Rau*7UR7wR7p*)7
(Q? u,v, U),p)|Q*L = (Q*La Uy, VL, wLap*)a (Q7 u,v, U),p)‘QR = (QRa UR, VR, wRapR)'

The folowing relations for these variables hold:

1 1
2 2 3
F1 F1
—(p+ — PL) ("’77,)? ,Px > PL (s — pg) [ DR 77)3’ ,Px > PR
Uy = urp+ P*+W(+1 p?/ (16) Uy = uR + l"*+~,+1TZR y
1) /2 Z1)/2
5 » ¥ Y 5 » v ¥
J=19L [1 - (ﬁ) :| ,Px S PL —3=19R [ - (ﬁ) px < PR
(19)
¥y—1PL :7*4—1;%
TFI pe 1 ORA—Tp, > DPx>PR
e P > _ ol Px 4q
OLpp ~—1 p PL 0xR = T PR (20)
oxL = Px T (17) o) 5
1 OR (—*) P« < PR
or (,’%z) v, px < pL P *
y+1 Py y=1
= VB R+ >
wp —ay 72+1 FIE T b >y B uRr +ap 3y bR + 25 Px > PR o
sk = T ARy sy 18) TR " (p* )”*”/2” <
- u a £x s
ux —ar, (%) ) px < PL * R \Pr Pr = PR

Here a;, = \/vpr/0r, ar = \/7YPr/0r, and 7y denotes the adiabatic constant. Further s},
denotes “unknown left wave speed”, s, “unknown right wave speed”. Note, that the system

(16) - (21) is the system of 6 equations for 6 unknowns p,,t, 0.1, 0x R,slT L,s:} r- The solution
of this system leads to a nonlinear algebraic equation, and one cannot express the analytical
solution of this problem in a closed form. The problem has a solution only if the pressure

positivity condition is satisfied

2
1(aL +ag). (22)

ur —ur, <

We will use some of these relations to construct and solve the initial-boundary value problem
which will be the original result of our work.
Remarks

e Once the pressure p, is known, the solution on the left-hand side of the contact discon-
tinuity depends only on the left-hand side initial condition (13). And similarily, with p,
known, only the right-hand side initial condition (14) is used to compute the solution on
the right-hand side of the contact discontinuity.
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e The solution in ;, U Qyrp U £, (across 1 wave)
There are three unknowns in the region €2, . It is the density p,r,, the pressure p,, and the
velocity u,. Also the speed sk, of the left wave determining the position of the region
Qprr is not known. The solution components in 27 U Qg U €2, region must satisfy
the system of equations (16)-(18). It is a system of three equations for four unknowns.
We have to add another equation in order to get the uniquely solvable system in €2, U
Qprr U Qr.

5. Boundary condition by preference of pressure

In this section we construct the boundary condition, i.e. the state gz in (15), preferring the
given value for the pressure pgven > 0. This boundary condition corresponds to the real-world
problem, when we deal with the experimentally obtained pressure distribution at the boundary.
We add the following complementary conditions into the system (12),(13)

Px ‘= Povens PR = Pxy OxR = Ocivens UR = Ugveny WR = Wgrven-

(23)

Here p, is the pressure in €2, U (), g, see Section 4.. The conditions (23) prescribe the given
pressure wherever it is possible, solution in {2;, is governed by the condition (13). We seek
the boundary state g as the unique solution of the problem (12),(13),(23) at the half line
Sp = {(0,t); t > 0}. The system (16)-(21), (23) is uniquely solvable. The algorithm for the

construction of the primitive variables gg, ug, vg, wg, pp at the half-line Sg is shown in Fig.
The complete analysis of this problem is shown in Kyncl (2011).

3.

Px > PL

P+ < PL

851 =uy, —

Uy =

y+1 px
2y pp,

2 bl
(v+Dpyg,
P +::7;}11L

ar, =

u*:uL+%aL<17(

PL
'YQL’

SHL =uL —ar

,,7*)(7*1)/%
PL

pe N (V- /27
y—1pPp STL = Ux —arp, L
YL pa t 1/
OxL = OL pp ~~A=T - Px v
PL o«L = oL
Py y+1 PL
s1 >0 51 <0 sgr, >0 sgrL <0
Uy > 0 uy < 0 sTr >0 st <0
u, >0 uy <0
OUTLET OUTLET INLET OUTLET OUTLET OUTLET INLET
PB = PL PB = Px PB = Px PB = PL mow oge e PB = Px PB = Px
uRp = uy, UR = Ux U = Ux uRp = uy, W (] mm W URB = Ux UB = Ux
v = vp, v = v, VB = VR v = v, I 1l I (I v = vp, VB = VR
wp = wy, wp = wy, wp = WR wp = wy, IS s g2, wp = wy, wRp = WR
eB = oL 0B = 0«L 0B = 0«R eB = oL DS i 0B = 0«L 0B = Q«R
—— A
=2 =
P =
AR =
+ + +
~ o
2 2 |
+HR ]2 “‘L
oLl by
s~ o|™ =
SIS
e e
SENS
ML
2 2
\‘w |‘5
[SF

Figure 3: Boundary condition by preference of pressure, algorithm for the solution at the bound-
ary. The value of the pressure p, is prescribed, solution op, up, vg, wg, pp is computed.
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6. Boundary condition by preference of velocity

In this section we construct the boundary condition, i.e. the state gz in (15), preferring the
given value for the velocity ugven. We add the following complementary conditions into the
system (12),(13)

Uy = Ugiveny UR = Uy OxR ‘= Ociveny UR ‘= Ugiven, WR ‘= Waeiven- (24)
We seek the boundary state gz as the unique solution of the problem (12),(13),(24) at the half
line S = {(0,%); ¢ > 0}. The system (16)-(21), (24) is uniquely solvable. The algorithm for
the construction of the primitive variables op,upg,vg, wg, pp at the half-line S is shown in
Fig. 4. The complete analysis of this problem is shown in Kyncl (2011).

Uy < UL, Ux> UL
— PL
1 = L = —
D =dopvpr + 02 (T2 (up — uy)? ar Yer» SHL UL =oAL
1 24
Ps =3 <2PL + I5torn(ur —uy)® + (ug, — u*)vD) <7u*+uL+ 1aL> =1
- Px = PL Pl
s1=up — ,/v2L L;lpf*ﬁ-i’yz L y-1°L
QL"/—I ngL ps \(VTD/27
our — o i pe s == ar (£r)
*E FEL T pe \ /7
Px  Y+1 OxL = QL (E)
s1 >0 s1 <0 spgr > 0 spr <0
u, > 0 ue <0 spr > 0 stp <0
Ty S0 Uy <0
OUTLET OUTLET INLET OUTLET OUTLET OUTLET INLET
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- -
2 2
\‘w \‘3‘
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Figure 4: Algorithm for the solution of the problem (12),(13),(24) at the half line Sp
{(0,t); t > 0}. Possible situations are illustrated by the pictures showing the region Q2 U
Qpurr U, with the sought boundary state located at the time axis.

6.1.

B.C. for the Impermeable Wall

As a special case of the complementary condition (24) we prescribe zero normal velocity, i.e.

we choose u, := 0. Using the analysis in Section 6. we construct the solution of the system
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(12),(13),(24) in primitive variables. It is

a—1Pp
or Y+1 px tl
PL  y—
P THFT _ 2pL+"T“9Lu2L+uL\/49mpL+gi(“’T“)2ui
,withp, = 5 , urp >0,
vL
oB wL
up Px
vB = 5 (25)
wB -1 uL>7,1
14 2220
PB oL ( e
0
vy , up <0
wr, 5
5
—1u T=1
pL (1 + ’YTiL) v

ar

Here o1, ur, v, wr, pr, are prescribed, and ap, = /ypr/or. The solution for the first compo-
nent of the velocity up is equal to the prescribed velocity u, = 0 in this special case.

7. Examples
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Figure 5: Incompressible flow, body in the channel. Comparison of the various boundary con-
ditions.

Here we present a computational result of the 2D non-stationary inviscid channel flow at
Mach number M = 0.67. A body immersed in the flowing fluid establishes a certain wave
pattern which evolves in time and eventually exits the channel. At Figure 1. we show, that
the fixed (values are fixed at the boundary) and linearized (as described in Feistauer (2003))
boundary conditions do not give the expected result in time. The inlet is located left, outlet
right, other boundaries are considered as wall. The fixed boundary conditions give incorrect
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results near boundaries. The linearized boundary condition reflects the waves into the domain,
leading to the oscillations in the solution. The new suggested boundary conditions do not suffer
from these drawbacks. The residual behavior (shown right) demonstrates this result.

8. Conclusions

In this paper we worked with the system of equations describing the compressible fluid flow in
2D and 3D. We applied the finite volume method for the discretization of these equations. In
order to discretize the values at the boundary we solved the modification of the local Riemann
problem. The right-hand side initial-value for this problem was replaced by suitable conditions.
On the contrary to the solution of the initial-value Riemann problem, the solution of some mod-
ified boundary problems can be written in a closed form. Therefore it is not computationally
expensive to use the constructed boundary conditions in the code. The algorithms for the so-
lution of the boundary problems were coded and implemented into own-developed software
for the solution of the compressible (laminar or turbulent) gas flow (the Euler equations, the
Navier-Stokes equations, the Reynolds-Averaged Navier-Stokes equations) in 2D and 3D. The
presented numerical example shows superior behaviour of these boundary conditions.
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