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Abstract: Regarding steam turbine blade vibrations, damping of blades as well as
whole bladed disk vibrations are one of the most important parameters in terms of
steam turbine operation. Values of the damping parameters depend on properties
of material used for blades and disc as well as on geometric parameters of blade
shroud contact areas with friction elements. The in-house made software enables
fast parametric optimization using a multi-criteria function, for example angle of
contact planes or mass of friction elements. The real bladed disk was excited in vac-
uum machine to provide material and construction damping. The measured modal
properties and damping parameters identification are used for model correction as
well as for detailed meshed model in commercial software.
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1. Introduction

The need for higher efficiency leads to thinner blades profile on one hand but the requirement of
higher stage power output with different operation points leads to higher bending stress in blade
on other hand. This higher stress in blade is resulting in smaller dynamic load which can be
applied on blades. One of the most usual approaches to the suppression of the undesirable blade
vibrations is application of the friction elements and connection to continuous coupled set of
blades. In order to increase stiffness and damping of turbine blades a new type of shrouds with
friction contacts was developed. However the effect of the friction contact cannot be determined
during design process without deeper knowledge of this type friction and without identification
of other damping parameters.

That is why the first goal of this article is damping identification of new type of shrouded
blades depending on excitation amplitude. The damping phenomena is very complex. Damping
in real bladed disk usually includes material damping, ”unwanted” root construction damping,
friction damping and other issues, for example the air resistance. In order to uncover all aspects
of the real blade damping, we will proceed step by step.

From measurement point of view, the good agreement will be presented between the damping
ratio of beams specimens and free blades as well as the issues of identification of coupled blades
damping. Damping dependence on the amplitude of blade vibration or on the number of nodal
diameters will also be discussed.

In theoretical part of this article, the FEM results of in-house code are compared with com-
mercial software as well as with measurement. For real-time design process, the methodology
for quick and reliable model creation is included. The methodology involves modal condensa-
tion in the sense of degree of freedom reduction. This part is important for damping element
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parameters designing - as discussed in Hajžman et al., (2013) - the shape, position and other
geometric properties have different influence on optimization parameters from the point of view
of dynamic response in different resonance states.

2. Geometric specification

Firstly, the experimental (real bladed) disk was made with 56 high pressure blades. After first
measurement with free standing blades, the friction elements were placed between shrouds (i.e.
the tops of blades) to increase the total damping as well as stiffness of system (fig. 1). There are
two contact areas in points Ai, Bi with different slope angle, that’s why there are two different
contacts in the sense of behavior.

The bladed disk is placed in vacuum chamber to eliminate air damping. The blades are
connected with disk by so called T-root, see fig. 2. There are two radial and two axial contacts.
Due to centrifugal force, the relative movement between blade root and disk groove can be
assume as non-sliding with regard to calculation of natural frequencies and mode shapes. That’s
why this connection is in presented methodology modelled as rigid.

The ”construction” damping in root is often unwanted for this type of blades - it can cause
fretting cracks and it can damage the contact areas in root. For steam turbine blades there are
small relative deformations (relative displacements) in the root part contact areas (fig. 2). The
underplatform dampers, mainly used in aircraft engines, are inefficient for steam blades. But
this measured ”construction” damping is added to material damping in the mathematical model.

The blades airfoil was change to slim beam after several measurement, see below.

Figure 1: Scheme of two adjacent blades and damping element.
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3. Measured material damping

The measurement of damping is very sensitive on many aspects: the roughness of contact areas,
size of real contact area, type of material and other aspects discussed above. The first step to
precise the results is the knowledge of material damping.

Firstly, the rectangular beams were made from same material as the blades. The individual
beams were clamped at 2 ton cube by force approximately 500 kN between wedges, that is why
zero initial conditions were assured. Then an accelerometer was installed at the top of the beam
and a strain gauge was placed on the bottom of the beam. The impulse hammer or statically
deflection of beam top as initial condition were used for measurement of material damping
(fig. 3).

Figure 2: Scheme of T-root connection. Figure 3: Fixed beam for material
damping measurement.

The frequency as well as the geometrical shape of beam were close to the inspected blades.
In fig. 4 there is the material damping dependence on the initial bending stress in the bottom
(i.e. the initial displacement of the beam top). The material damping was evaluated for two
directions of initial statically deflection - the red and green curves express damping ratio of the
first two mode shapes.

From this measurement it can be seen, that the material damping is nonlinear dependent on
initial stress (although this stress is linear dependent on initial deflection for elastic deforma-
tion). The bending stress for real blades is in relatively low range. More details of measurement
for various types of blade couplings are in paper Kubı́n et al., (2013). Blue points demonstrate
at the fig. 4 the damping ratio for free standing blades in the bladed disk (3000 rpm), see next
sections.
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Figure 4: Damping ratio of free standing blades under rotation in comparison with material
damping ratio of beam cut out of the identical material.

4. Blade model and verification

The single blades are modelled as one dimensional continuum linked with rigid shroud body
in its centre of gravity of last blade profile - fig. 1. The mathematical model of the uncoupled
blade i with shroud in configuration space of its blade node displacements (in the direction of
rotating axes xi, yi, zi and of small angular displacements of the blade cross sections)

qB,i = [. . . , uj, vj, wj, ϕj, ϑj, ψj, . . .]
T
B,i ∈ R

nB , i = 1, 2, . . . , r; j = 1, 2, . . . , N (1)

has the form (Kellner and Zeman (2006); Kellner (2009))

MBq̈B,i(t) + ωGBq̇B,i(t) +
(
KsB + ω2KωB − ω2KdB

)
qB,i(t) = ω2fB , (2)

where MB, KsB and KdB are symmetric mass, static stiffness and dynamic softening matrices,
skew-symmetric matrix GB expresses gyroscopic effects , matrix Kω,B expresses a centrifugal
blade stiffening and ω2fB is force vector of centrifugal load.

The blade model created in MATLAB (36 degree of freedom = DOF) was compared with FE
model in ANSYS (15 000 DOF) and with measurement, see tab. 1. The first natural frequency
of blade in MATLAB is close to ANSYS, both models are 30 Hz far from measurement. This
reason can be in different boundary conditions. The measurement was done in hydraulic press,
where the blade is fixed in root, but the connection is not so ideal as in FE models. In tangential
direction it is less rigid. In ANSYS, the blade was fixed in the platform (the top of the blade
root) and in MATLAB it was fixed in the first node of FE model. Although this is very rigid
fixation the FE models are similar for the first frequency. The difference between FE models as
well as measurement increase but it is in range ±0.9%. For MATLAB accuracy verification the
model with 96 DOF was done, but it can be seen that there is no significant difference - 3rd and
4th column in tab. 1.

In the right part of the tab. 1 there are natural frequencies in rotating state. The change of
stiffness due to centrifugal forces is same for both FE models (it can not be measured in hy-
draulic press). It can be assumed that the MATLAB model of one blade has sufficient accuracy.
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Table 1: Natural frequencies of blade - measurement and FE models

5. The blade rim with friction elements in shroud – contact stiffness

This model, detailed described in Zeman et al., (2009) respects both contact stiffness between
blade i and friction element and between friction element and following blade i + 1. These
contact stiffnesses are defined by contact stiffness matrix between corresponding blades i and
i+ 1

K
(X)
C = diag (0 0 kζ kξξ kηη 0)ξi,ηi,ζi

, X = A,B, (3)

expressing the constraint for the circumferential displacement and two rotations by means of
contact stiffness kζ in normal direction to contact area ξiηi and two flexural stiffnesses kξξ, kηη.

This contact stiffness matrix is expressed in local contact coordinate system ξi, ηi, ζi placed
in central contact pointBi, respectivelyAi of the i-th blade shroud. The coupling (deformation)
energy between two adjacent blades i and i+ 1 (see fig. 1) is, in this contact coordinate system,
expressed as

Ei,i+1
C =

1

2

(
qBi

− qEi

)T
K

(B)
C

(
qBi

− qEi

)
+

1

2

(
qEi

− qAi+1

)T
K

(A)
C

(
qEi

− qAi+1

)
, (4)

where qBi
, qAi+1

are vector of blade i displacements in point Bi and vector blade i + 1 dis-
placements in pointAi+1 expressed in coordinate system ξi, ηi, ζi. The vector qEi

is vector of
friction element displacements. The difference between qBi

− qEi
and qEi

− qAi+1
represents

the relative motion of two contact areas between two adjacent blades i and i+ 1.
The translation of blade local coordinate systems from point Ci to point Bi and from point

Ci+1 to point Ai+1 is expressed by translation matrices

RT
X =

 0 zX −yX

−zX 0 xX

yX −xX 0

 , X = Ai+1, Bi. (5)

The translated local coordinate system is then rotated so, that the contact coordinate axis ξi is
the radial according to bladed disk axis of rotation yf .
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The vector of displacements in point Bi in the corresponding contact coordinate system is

qBi ξi,ηi,ζi
=


uBi

vBi

wBi

ϕBi

ϑBi

ψBi


ξi,ηi,ζi

=


τB 0

0 τB




uBi

vBi

wBi

ϕBi

ϑBi

ψBi


xi,zi,yi

uBi ϕBi


qBi xi,yi,zi

,

(6)
where the rotation matrix τB between coordinate systems is specified by angle δB between
radial axis xi of blade passing through point Ci and radial axis ξi passing through point Bi

τB =

 cos δB 0 − sin δB
0 1 0

sin δB 0 cos δB

 . (7)

Analogously the vector of displacements of point Ai+1 in this contact coordinate system is
defined as

qAi+1 ξi,ηi,ζi
=

[
τA 0
0 τA

]
qAi+1 xi+1,yi+1,zi+1

, (8)

where

τA =

 cos δA 0 sin δA
0 1 0

− sin δA 0 cos δA

 . (9)

The vector of blade i displacements in point Bi in coordinate system xi, yi, zi is defined by
generalized displacements of point Ci and by matrix of translation RB

qBi xi,yi,zi
=

[
uBi

ϕBi

]
xi,yi,zi

=

[
E RT

B

0 E

] [
uCi

ϕCi

]
xi,yi,zi

=

[
E RT

B

0 E

]
qCi

. (10)

According to (6) this vector in the contact coordinate system ξi, ηi, ζi has the form

qBi ξi,ηi,ζi
=

[
τB 0
0 τB

] [
E RT

B

0 E

]
︸ ︷︷ ︸

TB

qCi xi,yi,zi
. (11)

Analogously, the vector of blade i + 1 displacements in point Ai+1 in the contact coordinate
system ξi, ηi, ζi is expressed as

qAi+1 ξi,ηi,ζi
=

[
τA 0
0 τA

] [
E RT

A

0 E

]
︸ ︷︷ ︸

TA

qCi+1 xi+1,yi+1,zi+1
. (12)

We can now express the coupling energy, defined in (4)by means of generalized coordinates of
i-th and i+ 1-th blades in the form

Ei,i+1
C =

1

2

(
TBqCi

− TE,BqEi

)T
K

(B)
C

(
TBqCi

− TE,BqEi

)
+

1

2

(
TE,AqEi

− TAqAi+1

)T
K

(A)
C

(
TE,AqEi

− TAqAi+1

)
. (13)
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After multiplying the previous equation and from identity ∂Ei,i+1
C

∂qR
= K

(R)
Ci

qR, where qR is

vector of blade rim displacements, we obtain the stiffness matrix of coupling K
(R)
Ci

between two
adjacent blades i and i+ 1.

By summation of all these individual matrices for all contact areas we obtain the global
contact stiffness matrix connecting all the blades together into a blade rim, whose equation of
motion is

MRq̈R(t) + ωGRq̇R(t) +
(
KsR + K

(R)
C + ω2KωR − ω2KdR

)
qR(t) = ω2fR , (14)

where all matrices (except K
(R)
C ) are block-diagonal in the form

XR = diag (XB, XB, . . . , XB) , X = M ,G,Ks,Md,Kω,f . (15)

6. Modelling of the friction element

Figure 5: Scheme of the friction element.

The contact stiffness matrix K
(B)
C between friction element and one blade shroud defined in

(3), depends on geometric and material characteristics of friction element. The normal force in
the contact is

N0 =
mT rω

2

tan δi
, i = α, β, (16)

where mT is the friction element mass, δi is angle of the corresponding contact area, ω = πn
30

is
the angular velocity and r is radius of friction element centre of gravity. The contact stress is

σ[MPa] =
N0 [N ]

Aef [mm2]

, Aef =

hef︷︸︸︷
hγh

bef︷︸︸︷
bγb .106 (17)

where h is axial and b is radial friction element proportions and Aef is the effective contact
area (see fig. 5), defined by real size of contact area, i.e. the high h multiply by coefficient γh

etc. The contact stiffness figuring in the matrix K
(B)
C in 3 can be determined on the basis of the

contact stress. For more details see Kellner et al., (2010).
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7. The mathematical modelling of the disk

Disk is clamped on inner radius to rigid shaft rotating with constant angular velocity ω around
its y axis. According to the derivation presented in Rao (1989) the disk can be discretized in the
rotating x y z coordinate system using linear isoparametric hexahedral finite elements ( Šašek
et al., (2006)). The equation of motion can be written in a configuration space defined by the
vector

qD =
[
. . . , u

(F )
j , v

(F )
j , w

(F )
j , . . . , u

(C)
j , v

(C)
j , w

(C)
j , . . .

]T

D
∈ RnD (18)

of nodal j displacements (see fig. 6) in direction of rotating axis x, y, z. The disk nodes are
classified into free nodes (superscript F ) and coupled nodes (superscript C) on the outer and
inner surface of the blade roots. The mathematical model of the disk was derived in Šašek et
al., (2006) using Lagrange’s equations in the form

MDq̈D(t) + ωGDq̇D(t) +
(
KsD − ω2KdD

)
qD(t) = ω2fD , (19)

where MD, KsD and KdD are symmetric mass, static stiffness and dynamic softening ma-
trices, skew-symmetric matrix ωGD expresses gyroscopic effects and ω2fD is force vector of
centrifugal load.

The vector of generalized coordinates of the disk can be partitioned according to (18) as

qD =

[
q

(F )
D

q
(C)
D

]
, q

(F )
D ∈ Rn

(F )
D , q

(C)
D ∈ Rn

(C)
D . (20)

The displacements of the coupled disk nodes on condition of rigid blade roots modelled as
a disk part can be expressed by displacements of referential nodes Ri which are identical with
the first blade nodes j = 1 at blade roots (see fig. 6). This relation between coupled disk

Figure 6: Scheme of bladed disk model.
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displacements corresponding to blade i and blade displacements in referential node Ri is

 u
(C)
j

v
(C)
j

w
(C)
j

 =

 cosαi 0 sinαi

0 1 0
− sinαi 0 cosαi

 1 0 0 0 zj −yj

0 1 0 −zj 0 xj

0 0 1 yj −xj 0



u1

v1

w1

ϕ1

ϑ1

ψ1


B,i

, (21)

or shortly
q

(C)
j = Tαi

Tjq1,i, i = 1, 2, . . . , r, (22)

where xj, yj, zj are coordinates of the coupled disk node j on the rigid blade foots in coordinate
system xi, yi, zi of the blade i with the origin in the first blade node and αi is the angle between
the rotating disk axis x and the rotating blade axis xi. Coordinates of vector q1,i express the
referential node displacements in direction of blade rotating axes xi, yi, zi and small turn angles
of the blade cross section in node Ri.

The complete transformation between displacements of coupled nodes of the disk on the

Figure 7: Mode shape of disk modelled with roots, without blade influence.
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blade foots and the referential nodes Ri of all blades can be expressed in the matrix form
...

q
(C)
j
...

 =


...

. . . Tαi
Tj . . .

...




...
q1,i

...

 ⇒ q
(C)
D = TD,RqR. (23)

The global transformation rectangular matrix TD,R ∈ Rn
(C)
D ,nR describes the linkage between

the disk (D) and the blade rim (R).
For illustration we present in tab. 2 some number of lowest natural frequencies of the nonro-

tating centrally clamped modeled disk (see fig. 7) with rigid blade foots but without blades. The
nodes which lie on the inner radius are fixed in all directions. The mode shapes corresponding
to natural frequencies are characterized by the number of nodal diameters (ND) and the number
of nodal circles (NC). The modal values of the disk with foots modelled as flexible differ from
the disk model with rigid foots very small Zeman et al., (2009). The natural frequencies of
blade rim fixed on root diameter and the frequencies of full bladed disk are in tab. .

Table 2: Modal analysis of the disk, blade rim, bladed disk and the influence of disk condensa-
tion level.

8. The modelling of condensed bladed disk with friction elements in blade shroud

The motion equations of the fictive undamped system assembled from uncoupled subsystems –
the central clamped disk with/without rigid blade roots and blade rim with friction elements in
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shroud – in the configuration space

q =

[(
q

(F )
D

)T (
q

(C)
D

)T

qT
R

]T

(24)

can be formally rewritten as

Mq̈(t) + ωGq̇(t) +
(
Ks + ω2Kω − ω2Kd

)
q(t) = ω2f . (25)

According to mathematical models (19) and (14), all matrices have the block-diagonal form

X = diag (XD, XR) , X = M , G, Kd,

Ks = diag(KsD, KsR + K
(R)
C ), Kω = diag(0, KωR) (26)

and f =
[
fT

D, fT
R

]T . The vector of generalized coordinates q(t) of the real bladed disk in
consequence of the couplings (23) can be transformed into new vector q̃ in the form q

(F )
D

q
(C)
D

qR

 =

 E
(F )
D 0
0 TD,R

0 ER

[
q

(F )
D

qR

]
or shortly q = TF q̃. (27)

The mathematical model of the central clamped bladed disk with friction elements in blade
shroud in the configuration space q̃ takes the form

M̃ ¨̃q(t) + ωG̃ ˙̃q(t) +
(
K̃s + ω2K̃ω − ω2K̃d

)
q̃(t) = ω2f̃ , (28)

where X̃ = T T XT , X = M ,G,Ks,Kd,Kω and f̃ = T T f .
The number of free node elastic coordinates q

(F )
D of the disk is very large for future dynamic

analysis of the bladed disk with dry friction elements. Hence, disk DOF number corresponding
to free node coordinates and blades DOF number is desirable to reduce by use of the modal
condensation Slavı́k et al., (1997). Let modal properties of the conservative model of the non-
rotating disk with blade roots isolated from blades in cross-sections passing through referential
nodes be characterized by spectral and modal matrices. These matrices satisfy the orthogonality
and norm conditions

V T
D MDVD = E, V T

D KDVD = ΛD, (29)

where E is unit matrix. The modal matrix of the disk can be rearranged into the block form

VD =

 mV F
D

sV F
D

mV C
D

sV C
D

 (30)

corresponding to decomposition (20) and eigenvectors are separated into frequency lower eigen-
vectors (so called master - superscript m) and frequency higher eigenvectors (so called slave -
superscript s). The vector qD(F ), corresponding to free disk nodes, can be approximately
transformed in the form

q
(F )
D =m V

(F )
D x (31)

where mV
(F )

D is the modal submatrix corresponding to free disk displacements and frequency
lower eigenmodes. Higher natural modes usually contribute less to the disk deformation and
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their influence can be neglected. The vectors qB, corresponding to blade displacements, can be
transformed by same way as the disk.

The vector q of the fictive system in consequence of the coupling (23) and modal transfor-
mations (31) (and blade rim by same way) can be transformed into new vector [xT

D xT
R]T of

the dimension m = mD + r.mB. The transformation is given by q
(F )
D

q
(C)
D

qR

 =

 mV
(F )

D 0
0 T m

D,RVR

0 mVR

[
xD

xR

]
or shortly q = Tx , (32)

where matrix mVR = diag(mVB ∈ RnR,mR and mR = r.mB. Details of this condensation can
be seen in Zeman et al., (2009).

The condensed mathematical model of the bladed disk after elimination of the coupled dis-
placements takes the form

M̃ẍ(t) + ωG̃ẋ(t) +
(
K̃s − ω2K̃d + ω2K̃ω2

)
x(t) = ω2f̃ , (33)

where transformed matrices are

X̃ = T T X T , X = M , G, Ks, Kd, Kω, f̃ = Tf . (34)

The condensed model (33) has much lower DOF number compared to noncondensed (full)
model gained from the fictive model by the transformation (32) with the modified transforma-
tion matrix TF . This matrix originates from T by the change of the modal submatrix mV

(F )
D of

the disk and the block diagonal matrix mVR for the unit matrices ED of order n(F )
D and ER of

order nR.

9. Measurement of rotating bladed disk

The next step after identifying the damping ratio of beams leads to identification of the damp-
ing ratio for free standing blades under rotation. Rotation is a very important aspect for this
measurement. Due to the rotation, the centrifugal forces are generated. It retunes the blades -
frequencies are changing (make stiffness higher) and also it fixes the blade root in the grooves
in the disc. Even more if the blades have friction elements between shrouds, the contact areas
are changing. This determined the boundary conditions of measurement.

It is evident that damping of such blades cannot be calculated and results obtained without
rotation cannot be applied on blades under rotation. First type of blades was free standing
blades. This test was carried out to compare damping ratio with and without rotation and to be
compared with measurement realized at the beams. In the second case, the same blades were
used but the friction dampers were added. For dynamic measurements under rotation, vacuum
high speed stand was constructed in Doosan Skoda Power.

• Maximum speed 12 000RPM

• Vacuum up to 3mBar

• Maximum diameter of bladed disk 1.2m
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Figure 8: Photo of high speed stand (bladed disk, electromagnets, preamplifiers, transmission
slip rings.

• Excitation systems - permanent magnets, electromagnets, air jet, water jets

In order to enable dynamic excitation the stand was equipped by a set of alternate electro-
magnets placed on the duraluminum plates. Boards with 7 electromagnets were placed above
and below the blades in the middle distance of 7 mm. This distance was chosen to provide the
highest power possible with respect to security. Fig. 8 shows us the placement of bladed disk
over one row of magnets. The figure also shows preamplifiers and transmission slip rings.

In order to determine damping ratio of blades, the blades had to be excited using electromag-
netic sweep. The excitation had to be determined for each nodal diameter. Minimum excitation
force of 5N was required for one magnet. In contrast with paper Jones and Cross, (2003),
where permanent magnets were used, Doosan Škoda Power used for excitation sets of AC elec-
tromagnets in this case. There are more than 10 years of experience with AC electromagnets
development and their usage for steam turbine blading. In comparison with permanent magnets
AC electromagnets have lower force amplitude however the frequency of excitation can be con-
trolled with higher accuracy. The main disadvantage of permanent magnet is induction of eddy
currents which heat the structure very quickly that is why the material properties are changing.
The largest advantage of AC electromagnet is that all measurement points including many fre-
quencies and nodal diameters can be measured at nominal speed with one set of magnets. It is
very important because the boundary conditions are stabilized (stiffness, blade untwist, normal
forced to friction dampers). On the other hand it is very hard to control frequency and phase
shift between electromagnets. Both had to respect following relationship (35). Of course the
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circumferential positions of electromagnets have to be considered.

fexcitation = fnatural ±N.frotation (35)

This equation describes relation between excitation and natural frequency. When ND > 0,
the excitation force is different from the natural frequency. It has positive influence to signal
noise ratio.

The special algorithm was used to generate maximal excitation force from electromagnets
(ECM). This algorithm involves physical properties of electromagnets (i.e. it can only attract
the iron). It seems to be easy to excite by one pulse for concrete time when the blades goes
around ECM. But the force from one EMC is for higher frequencies only about 5 N. That’s why
the algorithm generates signal for all EMCs during whole measurement and its dependent on
required nodal diameter. The frequency of EMC signal is then faster then the natural frequency,
as in (35). This is drawn on fig. 9. The locations of three first EMC are expressed by black,
green and red vertical line. The curves with same color represents the force generated by these
EMCs. The dark blue curve represents blade vibration in time - this excitation is ideal for excite
the blade with disk and with required number of nodal diameters. When the blade goes around
EMCs, the relative amplitude EMC force/blade is same as derivation (positive or negative).

Figure 9: Effect force from electromagnets to blades.

To detect damping using half power point method the excitation frequency had to vary around
the resonance. Fourier amplitude spectrum close to the resonance results from this type of
frequency sweep.

The damping ratio dependence on the blade vibration amplitude is shown in fig. 10. The
values of damping ratio were identified for 4 natural frequencies. These frequencies belong to
the first mode shape of the 2nd to the 5th nodal diameter of the running wheel (rotation speed
3000 RPM) where 6 strain gages were used for this measurement. Particular values of damping
ratio are approximated by the regression line that shows the increase of damping ratio with
the amplitude of blade oscillation. The significant variance of damping ratio is evident in the
fig. 10. This discrepancy is caused by two factors. The first factor is that different blade with
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slightly different manufacturing is measured that means different boundary condition. Secondly
when mistuning occurs there is an error during evaluation because there are two close interacting
peaks in frequency spectrum. The damping ratio comparison of beams and blades under rotation
is shown in fig. 4. It is apparent from this figure that the damping ratio of free standing blades
under rotation is a little bit higher than the damping ratio of beams. This is caused by additional
construction damping in blade root attachment.

Figure 10: Damping ratio dependence on blade vibration amplitude and comparison of free
standing and shrouded blades with friction elements.

As mentioned above the first measurement was done with original steam turbine blades in
vacuum chamber in Doosan Škoda Power. But the force from EMC was much lower than
expected - only 5 N for this type of material, which has relatively low permeability. That was
the reason for change of blade profile - the aerodynamic airfoil was changed to rectangular
shape 16x8 mm. This change results in lower frequencies and in lower stiffness of blade.
Moreover, the frequencies are close to natural frequencies of specimens for damping material
measurement, as mentioned above.

It is evident from fig. 10 that the coupled blades with friction elements have higher damping
ratio than the free standing blades. But this diagram does not show whether nodal diameters
influence the size of damping ratio or not. The influence of different nodal diameters will be
presented in next paper.
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10. Comparison of measurement and FE models

In this section, the modal properties of FE model created in MATLAB (and condensed) is
compare with reference detailed model in ANSYS and with measurement. The fig. 11 shows
natural frequencies for bladed disk with free standing blades. The small difference between
measured and computed values is not significant and it can be assumed that there will be no
problem with damping parameter identification in mathematical model. The correlation can be
done by change of elastic modulus.

Figure 11: SAFE diagram for natural frequencies of bladed disk with free standing blades -
measurement and FE results.

Although the correlation between modal properties FE models and measurement for free
standing blades is very good, there is high error for bladed disk with friction elements, see
fog. 12. The first measured frequency is close to computed values, But the difference measure-
ment - FE models rises with higher nodal diameters. But it can be seen the stiffening of the
bladed disk with friction elements compare to freestanding blades (in fig. 12 the free standing
blades are drawn by dashed line). In fig. 11 there is possible resonance with multiples of har-
monics for 7th and 8th nodal diameters, where the safety requirement is 5% difference between
natural frequency and possible excitation frequency.

The disagreement between measured and calculated natural frequencies in fig. 12 can be
caused by sliding contact areas between shrouds and friction elements. Higher excited nodal
diameter, less blades are in one sinusoidal. That cause higher relative displacements between
adjacent shrouds and that can caused sliding. The introduced methodology will be updated to
involve this phenomena. One way can be by identification of contact parameters in section 5.

The results obtained by measurement for different nodal diameters will be used for testing
methodology. It will be included in amplitude-frequency diagrams from harmonic excitation.
The excitation can be simulated only as harmonic in contrast to another type of excitation. The
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Figure 12: SAFE diagram for natural frequencies of bladed disk with friction elements - mea-
surement and FE results.

purpose is in section 9 - the excitation from EMCs is sinusoidal. Other type of excitation, i.e.
water jet, air-jet, permanent magnets, results in poly-harmonical excitation, which should be
described by Dirac pulse and by Fourier row. That can result in mistuning response which leads
to non-clearly conclusions.
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11. Conclusions

This paper summarizes the measurements done to the bladed disk with and without friction
elements. The measurement includes material damping, damping of blade-root connection and
the damping caused be friction element motion on several mode shapes.

The detailed methodology for model creating is introduced and compared with real data and
with commercial software. This methodology allows fast model computation. The modal con-
densation of model is prepared to identification and optimization of friction element parameters.
The correctness of the blade model was verified by measurement in hydraulic press. For bladed
disk with free standing blades there is very good agreement with measured data, but for bladed
disk with friction elements there is higher disagreement for both FE models as well as measure-
ment. The methodology enables the identification of contact and damping parameters and the
model can be tuned for real measured data.

Although the measurement was successful more excitation sources will be used. The reason
is to identify more natural frequencies and to identify damping for higher nodal diameters. That
will be done with system of water-jets simulating the stationary blades. This will be useful
for model testing but there will be the need of real force distribution modelling, as discussed
above. The measurement can be used for analysis of friction element properties, such as for
investigation of sprayed contact surfaces impact. This sprayed contact surfaces can have lower
friction coefficient which can lead to higher relative motion of the friction element between
shrouds.

In next paper, the forced response of mathematical model and experimental data will be
compare and the parametric optimization of the friction element will be applied to the bladed
disk after identification.
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