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Abstract: The paper presents the description of the developed JAVA implementation of the semi-
analytical fracture model based on cracked hinge approach by Ulfkjær et al. (1995) and introduces 
generalization of the model formulation to enable using the tensile softening function with an arbitrary 
shape for the nonlinear part of the model assumed as cohesive crack. Performed simulations of an 
adopted wedge-splitting test show consistency of the new formulation with reference data. A comparison 
with FEM solution is also presented to demonstrate a dependency of a load-crack mouth opening curve 
obtained by FEM and the implemented hinge model on its band width for different choices of softening 
function.        
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1. Introduction 

Nowadays, one of main approaches commonly applied for a description of fracture behavior is the 
cohesive crack approach (Barenblat, 1962; Dugdale, 1963), further generalized by Hillerborg et al. 
(1976) for quasi-brittle materials such as concrete and other cement-based composites as the fictitious 
crack model (FCM). This model recognizes experimentally observed cohesive character of crack 
propagation which these materials exhibit—as the so-called material softening—due to microcracking 
and other related processes (e.g. crack bridging, aggregate interlocking). This phenomenon takes place 
within the extensive fracture process zone (FPZ) developed ahead of the tip of a real traction-free 
crack. The cohesive (fictitious) crack concept consider the fracture energy dissipated in the process 
zone via certain closing cohesive stress applied to the fracture surface of a fictitious extension of a real 
crack (called fictitious crack) approximating the FPZ. This stress is non-constant over the fictitious 
crack length and increase from zero at the tip of the real traction-free crack—with full separation of its 
faces—to a value of uniaxial tensile strength ft of a material at the tip of the fictitious crack. Further 
a corresponding tensile softening function σ(w) is introduced as the crack evolution property of the 
model describing the relationship between the magnitude of applied cohesive stress and crack opening 
displacement, w. Based on this arrangement the amount of fracture energy dissipated in FPZ is fully 
expressed as the work done by cohesive stress on the crack opening displacement. The review of the 
relevant references for this topic appears in (Bažant & Planas, 1998; Karihaloo, 1995). 

The popularity and prevalence of models based on the cohesive crack approach is generally given 
by their simple implementation within the framework of the finite element method (FEM). Some well-
known complex numerical tools for modelling both elastic (or elastic-plastic) behavior and the quasi-
brittle fracture process have been developed on this basis, e.g. (Červenka et al., 2007). However, the 
practical using of such tools is limited by a trustworthy knowledge of the stress-crack opening 
relationship σ(w) considered as the key material input. The straightforward approach to provide whole 
softening curve is through stable tensile tests. Unfortunately such direct experimental measurement is 
very difficult to perform, mainly because tests tend to shift to asymmetric modes of failure or because 
several cracks developed simultaneously. All of these influences can introduce significant error into 
measurements and make the obtained results unusable (van Mier & van Vliet, 2002).  
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Application of indirect methods is another option to estimate softening curve from standardized 
fracture tests—the three-point bending test (TPBT) or the wedge splitting test (WST)—either using 
evaluation methods, e.g. the work of fracture method (RILEM, 1985), or increasingly used inverse 
analysis with the possible employment of advanced optimization techniques (Que, 2003). In the 
inverse analysis procedure, a set of parameters is provided as a seed for an iterative process, and 
numerical or analytical model is used to determine a corresponding load-displacement (P–d) or load-
crack mouth opening displacement (P–CMOD) curve, which is compared with the referenced curve 
obtained from a laboratory test. Many strategies are possible for this task. Finite element models, 
available in academic or commercial packages, generate reliable solutions, although they are time 
consuming. Since these computations are performed many times for the fitting procedure, analytical or 
semi-analytical models seem to be more adequate, despite the expected loss of accuracy. In the present 
paper, the own implementation of the semi-analytical model based on the cracked hinge concept 
is introduced with some extensions as the example of effective numerical tool suitable for purposes of 
the inverse analysis.  

2. The cracked hinge model 

The idea of a cracked hinge was presented originally by Ulfkjær et al. (1995) as the analytical model 
for calculation of load–displacement curves of notched and un-notched beams, further developed by 
Stang & Olesen (1998, 2000). The basic assumption of the model is that presence of a crack influences 
overall stress and strain field of a structure only in a local manner and this discontinuity is expected to 
vanish outside the certain bandwidth, s. Thus, within this band a crack propagation is modelled as the 
fictitious crack, while outside, the rest of the structure is considered in terms of the classical elastic 
theory. This assumption implies a reduction of the computational cost since only part of a structure is 
calculated using ideally closed-form analytical solution for any piece-wise linear softening curve. To 
avoid difficulties with derivation of the analytical solution for more complex functions (poly-linear, 
exponential) and its implementation as code, the semi-analytical approach of Olesen & Østergaard 
(2006) was employed. Some additional improvements have been formulated by authors as well. Main 
reason for this modifications was to allow using an arbitrary softening curve without any significant 
increase in the computation costs in the global iterative scheme. 

2.1. Theoretical basis 

The cracked hinge model can be viewed as a set of independent spring elements which are formed by 
incremental horizontal strips of the predetermined area of the structure surrounding a propagating 
crack, see Fig. 1. The flexural deformation are concentrated within this isolate domain modelled 
generally as a non-linear material hinge.   

 
Fig. 1: Loading and deformation of the cracked hinge element with stress distribution (left) and  

incremental layer inside the hinge considered as the non-linear spring (right). 

Due to rotation and translation of the rigid boundary of the hinge, the length of the attached 
springs is changed. The response of the springs on an enforced deformation is then considered linear 
elastic for pre-cracked state of a spring, whereas the cracked state is approximated by selected 
softening curve. Thus the stress distribution (see Fig. 1 left) can be determined by the equation: 
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where E denotes the elastic modulus and ε elastic strain.  

For evaluation of the stress distribution, a knowledge of the deformation state of the hinge is 
necessary to determine. This state is uniquely defined by a value of the angular deformation 2φ and by 
position of the neutral axis, y0. Thus, based on assumptions above, the strain distribution can be simply 
obtained from the expression:  

 0( ) 2 ( ) / .y y y sε ϕ= −  (2) 

A total elongation of any spring u(y) located at the distance y subsequently depends on two 
possible contributions. The first one is via an elastic strain ε(y) and second one is due to a crack 
opening, w(y). Thus, u(y) is given by nonlinear equation 

 w ( ( ))
( ) ( ) ( ),

w y
u y s y s w y

E

σε= = +  (3) 

which is necessary to solve numerically in the case of requirement of using arbitrary softening curve, 
e.g. as a root finding algorithm for the function 
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( ( )) ( ) ( ).

w y
f w y s y s w y

E

σε= − −  (4) 

2.2. Application to WS specimens 

Generally the hinge model can be incorporated to any structure with crack subjected to a bending 
moment (possibly combined with normal force). Such an example is also the wedge splitting test. The 
modelling of the wedge splitting specimen (see Fig. 2) using the hinge model was pioneered by 
Østergaard (2003). Since then, more authors have used same approach, mostly as a subroutine of the 
above-mentioned inverse analysis (Abdalla & Karihaaloo, 2004; de Oliveira e Sousa & Gettu, 2006; 
Skoček & Stang, 2008). Let us add that only bilinear or polylinear type of softening curve have been 
used in these cases.  

 
Fig. 2: Geometry and the loading of wedge splitting specimen with incorporated hinge element.  

The example of wedge splitting test have been chosen also in this paper for the validation of the 
presented implementation of the hinge model, in this time using an arbitrary softening curve. Fig. 2 
shows the incorporation of the hinge element in the WST specimen. The output of the wedge splitting 
test typically consists of the record of the loading force P depending on the crack mouth opening 
displacement (CMOD) measured at the point of the load application. For the determination of 
P–CMOD diagram we come from the fact that for a given values of angular deformation and neutral 
axis position of the hinge we can simply evaluate its transmitted bending moment Mhinge and normal 
force Nhinge by the following expressions    

421



 

 
hinge

10

hinge 0 0
10

( ) ,

( )( ) ( ),

h n

i
i

h n

i i
i

N t y dy F

M t y y y dy F y y

σ

σ

=

=

= =

= − = −

∑∫

∑∫

 (5) 

where the stress distribution σ(y) is defined from Eq. 1 and t denotes thickness of the specimen.  
According to the considered discretization (see Fig. 1), the Fi (Eq. 5) represents a magnitude of the 
force transmitted by i-th spring which can be quantified as   

 ( ) d .i iF y t yσ=  (6) 

The key part of the hinge model algorithm is to determine the neutral axis position for a chosen 
angular deformation of the hinge element using the equilibrium conditions 

 hinge ext hinge sp  a  .M M N P= =  (7) 

Here the Mext stands for the bending moment invoked by an applied loading, namely by its sectional 
components—vertical force Pv and splitting force Psp—showing in Fig. 2 (right). The magnitude of 
Mext we can expressed, neglecting self-weight of the specimen, by equation   

      ext sp 2 0 v 1

1
( ) ,

2
M P d y P d= − +  (8) 

where the vertical force, Pv, we determine for a values of wedge angle αw and coefficient of friction in 
the roller bearings µc as 

 w c
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c w
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.
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P P

α µ
µ α
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−

 (9) 

The summary of the algorithm of the calculation of a position of the neutral axis follows: 

1) Definition of geometry and material properties of a modelling specimen 
2) Setting the initial value of the angular deformation of the model (2φ) 
3) Subroutine for the calculation of the position of the neutral axis (y0): 
  Do 
          Setting the value of the neutral axis as a result from a previous iteration step (the initial value is h/2) 
          Loop over the springs (n = count of spring): 
          For (i = 0; i < n; i++) 
                  Evolution of strain for the i-th spring (Eq. 2) 
                  Numerical calculation of the crack opening for the i-th spring (Eq. 4)  
                  Determination of stress and force transmitted by the i-th spring (Eq. 1) 
          Evaluation of internal forces transmitted by the hinge (Mhinge, Nhinge), see Eq. 5 
          Evaluation of external loading forces applied to the hinge model (Psp, Pv, Mext), see Eq. 7-9 
  While (|Mhinge-Mext| < ERROR). 

  The CMOD, here defined as the opening of the specimen at the line of loading, depends on three 
different contributions. The first contribution, δe, is caused via elastic deformation of the specimen. 
The second one is due to the crack opening emanating from the starter crack/notch, δw. Finally, the 
third contribution is caused by the fact that there is a certain distance from the crack mouth located at 
h, to the line where CMOD is measured located at point b. This geometrical amplification, δg, is 
expressed through the estimation of the rotation of the crack faces. Thus, CMOD, is given by     

    e w gCMOD .δ δ δ= + +  (10) 

For evaluation of the first term in Eq. 10 the formula found in Tada et al. (1985) can be used   

    sp
e 2( ),

P
v x

Et
δ =  (11) 

where v2(x) represents geometric function computed for x = 1 – h/b as follows 
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The second term in Eq. 10, δw, can be directly evaluated form the Eq. 4 at point y = h. The last term, 
δg, is derived differently than in Østergaard (2003) as simplified formula    

    w
g ( )b h

h

δδ = −  (13) 

based on the assumption that “average” value of the angle between crack faces, θw, is expressed as 
θw = δw / h. 

3. Results and discussion 

The above-mentioned procedures were implemented in programming language JAVA and afterwards 
validated by results published earlier in literature (Østergaard (2003)). The referenced WST specimen 
for performed simulations was with these dimensions: L = H = 100 mm; h = 50 mm; a0 = 28 mm; 
d1 = 35 mm; d2 = 85.2 mm; am = 4.5 mm; bm = 35 mm; thickness t = 100 mm (the dimensions are 
indicated in Fig. 2 left).  The angle of the wedge was chosen as αw = 15° and friction in the roller 
bearings was ignored, so that µc = 0. The elastic un-cracked part of the modelled specimen was 
prescribed by Young’s modulus E = 30 GPa and Poisson’s ratio ν = 0.2. The fictitious crack part was 
defined by referenced tensile softening as the bilinear diagram with parameters: tensile strength 
ft = 2 MPa; critical crack opening wc = 0.5 mm; coordinates of the kink point σ(w1) = 0.2 MPa and 
w1 = 0.045 mm; fracture energy GF = 95.5 Nm. The hinge model was loaded by incremental value of 
the angular deformation ∆φ = 1.0×10-5 rad. 

 
Fig. 3: Comparison of the P–CMOD response of the implemented semi-analytical model with data of 

FEM and analytical solution originally published by Østergaard (left); convergence study of the 
implemented model shown on P–CMOD diagram (right). 

For the referenced configuration, the computed P-CMOD diagrams, see Fig. 3 (left), shows the 
consistency of a response with the analytical model by Østergaard (2003). Observed small 
discrepancies are probably caused by the modification of the CMOD calculation procedure which is 
represented by Eq. 13. The study shown in Fig. 3 (right) documents very fast convergence of the hinge 
model depending on the increasing count of the springs. Apparently the rate of convergence will 
depend mainly on a prescribed softening function curve. 

In order to investigate capability of the implemented model to use any softening curve with 
arbitrary shape, the following numerical study is presented. From previous results it is obvious that 
explicit value of the hinge bandwidth, s, is necessary to calibrate if we required optimal agreement 
with FEM solution. Therefore, the comparison of simulation results from two models, implemented 
cracked hinge model and specialized own-developed academic-purpose FE code implemented the 
FCM, is further discussed. In this study, the following type of tensile softening function were used, see 
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Fig. 4 (left): bilinear (referenced); linear and Hordijk’s power exponential function according to 
formula 

    ( ) ( )
3

3
t 1 2 1 2

c c c

( ) 1 exp 1 exp
w w w

w f a a a a
w w w

σ
     
 = + − − + −   
      

 (14) 

with coefficients a1 = 3, a2 = 6.93 and critical crack opening wc = 5.136GF/ft.  

The FE mesh illustrated in Fig. 4 (right) consist of linear elastic isoparametric quadrilateral 
elements in plane stress with parameters mentioned earlier. The FE simulation was controlled by 
stable CMOD control (∆CMOD = 2.5×10-4 mm) with simultaneously applied vertical loading force 
½Pv recalculated iteratively for each loading step. The additional loading by cohesive force was 
applied under the conditions of the FCM.   

  
Fig. 4: The defined tensile softening functions: with constant (left) and increasing (middle) value of 

the fracture energy; FE mesh of the WST specimen (right). 

The first set of results (Fig. 5, left) were obtained for the defined tensile softening functions 
according to Fig. 4 (left) with considered constant value of tensile strength ft = 2.0 MPa and fracture 
energy GF = 95.5 N/m. The explicit band width of the WS specimen as the characteristic size of the 
hinge element was fixed in ratio s/h = 0.64. Let us add that this value is optimal value (based on FEM 
comparison) in the case of the referenced bilinear softening curve. From these results it is evident that 
pure change of the shape of a softening function caused relatively small deviation from corresponding 
FEM solution. Similar behavior is viewed in Fig. 5 (right) where the second set of results were 
obtained this time for increasing value of the fracture energy in case of bilinear functions illustrated in 
Fig. 4 (middle). The major discrepancy between the P–CMOD diagrams is concentrated around the 
peak load and confirms the fact that elastic energy stored in the crack band increases with increasing 
band width s and thus, results in a more unstable crack growth, yielding a lower peak value. The 
overall curve then remains unchanged except the amount of the fracture energy GF needed to be 
preserved constant. 

 
Fig. 5: Simulated P–CMOD diagrams of the models using the defined tensile softening functions with 

the constant (left) and increasing (right) fracture energy. 
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4. Conclusion 

The paper presents the description of the author’s implementation (in JAVA programming language) 
of semi-analytical fracture model based on the cracked hinge approach introduced by Ulfkjær et al. 
(1995) and further developed by Stang & Olesen (1998, 2000). Generalized formulation of this model 
was adopted which enables to use for the cracked part of a structure described as the fictitious 
(cohesive) crack the tensile softening function with an arbitrary shape. The implemented procedures 
were validated by data published by Ostergaard (2003) where a wedge splitting test had been 
simulated. The obtaining results correspond with this origin data and confirm the applicability of the 
implemented model. The general dependency of band width of the hinge element incorporated to the 
WS specimen was also presented in the numerical study involving FEM modelling. There, the 
influence of the change of a tensile softening function shape and increasing value of fracture energy 
was investigate and indicates that this dependency is not strong but implies the necessity to calibrate 
the hinge model when we required optimal agreement with a FEM solution.   
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