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Abstract:  The general equation for the transverse vibration of Euler-Bernoulli beam has been used 
since it was derived by means of classical derivatives of the shear force, the bending moment, the slope 
and the deflection of the beam. However these derivatives are not defined at such points of a center-line 
between ends of the beam in which there is a concentrated support or a concentrated mass or a 
concentrated mass moment of inertia or an internal hinge connecting beam segments, which are 
discontinuities that can be met in practice. We have applied the distributional derivative for a 
discontinuous shear force, a discontinuous bending moment, and a discontinuous slope of the beam in 
order to derive generalized mathematical model for free transverse vibration as a system of partial 
differential equations. We have computed general solution to the generalized mathematical model for 
prismatic beam by means of a symbolic programming approach via Maple. As a result of this approach, 
computing natural frequencies and modal shapes of a slender beam, it is not necessary for continuity 
conditions to be put together at discontinuity points mentioned. As an example we have used this 
approach to obtain a frequency equation of a beam on three pin rigid supports, which would be more 
complicated if we tried to apply the transfer matrix method. 

Keywords:  Euler-Bernoulli beam, transverse vibration, discontinuities, Dirac distribution. 

1. Introduction 
Classical analytical method of calculating natural frequencies of a beam with discontinuities is based 
on the following main steps (Timoshenko, 1937). Firstly we divide the beam into segments without 
discontinuities. Secondly we find continuous solution to a differential equation of motion for each 
segment separately. Thirdly we express boundary conditions for each segment, and continuity 
conditions among adjoining segments leading to a homogeneous system of linear algebraic equations. 
Finally we derive a frequency equation as a condition of nontrivial solution to the homogeneous 
system of linear equations.  

Applying the distributional derivative definition for a discontinuous shear force, a discontinuous 
bending moment, and a discontinuous slope of a beam, we can derive a mathematical model for free 
transverse vibration of Euler-Bernoulli beam with discontinuities caused by concentrated supports or 
concentrated masses or concentrated mass moments of inertia situated between ends of the beam, or 
hinges connecting beam segments. This mathematical model can be solved like only one differential 
task without dividing the beam into segments where all the continuity conditions among adjoining 
segments are fulfilled automatically. Using this approach, we always have only four integration 
constants irrespective of the number of the discontinuities. 

2. The classical equation of motion for free transverse vibration of Euler-Bernoulli beam 

Neglecting the effects of rotary inertia and shear deformation, and supposing no axial loading of the 
slender beam, we may express the equation of motion for free transverse vibration of the beam without 
discontinuities in the shear force, the bending moment, the slope and the deflection (Rao, 2007) as 
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where w(x,t) is the deflection, ρ is the density of the beam material, A(x) is the cross-sectional area, E 
is the modulus of elasticity (Young’s modulus), and J(x) is the area moment of inertia with respect to 
the centroid axis which is perpendicular to the plane of vibration of the beam. 

3. A mathematical model for free transverse vibration of Euler-Bernoulli beam with 
discontinuities 

Expressing the first classical derivative of the shear force (Q) with respect to x from the equation of 
motion for an element cut out of the beam (Juliš at al., 1987; Brepta at al., 1994), and adding 
discontinuities of this force by using the distributional derivative definition (Schwartz, 1972; 
Štěpánek, 2001; Kanwal, 2004), we can derive Eq. (2) in which ri(t) is a reaction at ith concentrated 
support at a point x=ai (0< ai < l), l is the length of the beam, mi  is a concentrated mass at a point x=bi 
(0< bi <l), and Dirac(x-ai) denotes the Dirac distribution.  

When a beam carrying concentrated masses with moments of inertia Ji at points x=bi is vibrating, 
jump discontinuities in the bending moment may occur at these points. Expressing the first classical 
derivative of the bending moment (M) from the static equilibrium equation for an element cut out of 
the beam, and adding discontinuities of this moment multiplied by the Dirac distribution moved to the 
points of the discontinuities, we can obtain Eq. (3).  

If a beam contains hinges connecting segments of the beam at points x=ci (0< ci < l), discontinuities in 
the slope (  ) of magnitude ψi(t) may be found at these points. Expressing the first classical derivative 
of the slope from the relation between the bending moment and the beam centerline curvature, and 
adding distributional parts containing ψi(t) to the classical part of the distributional derivative, we can 
acquire Eq. (4). 
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4. Free vibration solution 

Supposing a form of the solution to equations (2) to (5) as 
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we can derive ordinary differential equations (6) to (9) for unknown shapes of the deflection (ws), the 
slope ( s ), the bending moment (Ms), and the shear force (Qs) as follows: 
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5. Characteristic functions of prismatic Euler-Bernoulli beam with discontinuities 

In order to simplify expressions of the general solution to equations (6) to (9) for a prismatic beam, we 
introduce the notation:  

                                                               4 A  2

E J     ,                                                                 (10) 

where Ω is a natural circular frequency of vibration. 

We have used the Laplace transform method so as to compute general solution to the system of Eqs. 
(6)-(9), i.e. characteristic functions of the beam, with integration constants in the form of initial 
parameters: 
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where Heaviside(x-a) is the denotation used in Maple for Heaviside’s unit step function moved into 
the point x=a. 

Example   By using Eqs. (11)-(14), derive the frequency equation of a slender beam of the length l on 
three pin rigid supports where both ends of the beam are supported. 

SOLUTION    Substituting n1=1, n2=0, n3=0 ,a1=a, R1=R, m=ρ.A  into Eqs. (6)-(9) for this case, we 
receive: 
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and a deformation condition for the concentrated support at x = a  between ends of the beam (a < l): 
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By substituting Eqs. (12) and (14) into Eqs. (20) and (21), and taking into account Eqs. (19), we obtain 
a homogenous system of three linear algebraic equations for unknown initial parameters 
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beam, in matrix form:  
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For nontrivial solution to Eq. (22), the matrix (23) must be singular, i.e.: 

                                                                 det(B) = 0    .                                                                       (25) 

By substituting Eq. (23) into Eq. (25) and simplifying, we acquire the frequency equation:  
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6. Conclusions 
Contribution of this paper to modal analysis of slender beams is that the mathematical model for free 
transverse vibration, i.e. Eqs. (2)-(5), holds true also for the discontinuous shear force, the 
discontinuous bending moment and the discontinuous slope. Discontinuities in shear force are 
supposed to be owing to idealized concentrated supports or inertia masses between ends of the beam. 
Likewise, discontinuities in bending moment are assumed to be due to idealized concentrated 
moments of inertia situated between ends of the beam. On the contrary, discontinuities in slope are 
caused by real hinges connecting beam segments. Jump discontinuities in unknown dependently 
variable quantities have been expressed in corresponding distributional derivatives (2)-(4) where the 
singular distribution Dirac(x), which is usually denoted as δ(x), is always moved into the point with a 
discontinuity mentioned, and multiplied by a magnitude of the discontinuity. To be able to find modal 
shapes of a slender beam analytically with discontinuities mentioned, we have derived Eqs. (6)-(9) for 
shapes of the shear force, the bending moment, the slope and the deflection. Using the Laplace 
transform method, we have computed the general solution (11)-(14) containing integration constants 
in the form of initial parameters.  

Computing limits of Eq. (14) at points x=bi, we can express the unknown amplitudes of the deflection 
Wi as functions of initial parameters. Similarly, computing limits of Eq. (13) at points x=bi step-by-
step, we can express the unknown amplitudes of the slope Φi as functions of initial parameters. In 
order to determine the unknown initial parameters, we must establish four boundary conditions. So as 
to determine the unknown reactions at concentrated supports between ends of the beam, and 
amplitudes of discontinuities in the slope at hinges connecting beam segments, we must establish 
corresponding deformation conditions at these points. These deformation and boundary conditions 
create all together a homogeneous system of linear equations. The condition of the nontrivial solution 
to this system is the frequency equation of the beam with discontinuities assumed. 
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