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Summary: The paper is focused on numerical plane model of a rigid coin with
rectangular cross-section impacting to an elastic foundation.

1. Introduction

Behavior of a rigid object repeatedly impacting to a surface of an elastic body is strongly de-
pendent on properties of the contact and could present chaotic motion, e.g. see Peterka and
Tondl (2002). There are several phenomena influencing direction and size of contact forces be-
tween the object and the body: Resistance of the surface against penetration of a shape, energy
dissipation due to elastic properties of the body and friction between contact surfaces.

In this paper we will concentrate on a problem, which can be interpreted as a typical cylin-
drical coin restrained to move only in a plane with three degrees of freedom such as the cut by
the plane will be a rectangle.

2. Model

The coin of diameter d = 2 cm, thickness t = 2 mm, weight m = 3.14 g, moment of inertia
I = 7.06 · 10� 8 kg m2, is assumed as a rigid rectangle moving in the plane as shown on fig. 1.
Its state is represented by three coordinates x, y, � and their velocities vx, vy, v� .
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Obrázek 1: Model of a coin

The coin is moving in gravity of size g = 9.81 m s� 2. The contact between the coin and the
body is reduced on the penetration of corner points. Each corner point is loaded by contact force
F composed of two forces: statical component Fs and damping component Fd acting only if
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the corner is under the body surface. The statical component is considered simply as reaction of
linear Winkler foundation:

Fsi(yi) = −k yi, (1)

where k = 10000 N/m is the stiffness of the contact and yi is vertical coordinate of the corner
i (the surface has zero y coordinate). Damping force is assumed as linear viscous damping
loading the corner in the opposite direction of its velocity:

Fdxi(vxi) = −c vxi,
Fdyi(vyi) = −c vyi,

(2)

where c = 0.5 Ns/m is the viscous damping coefficient and vxi, vyi are velocity components of
the corner i. Corner coordinates are calculated in the following way:

x1 = x+ dx1, dx1 = rd cosϕ− rt sinϕ,
x2 = x+ dx2, dx2 = −rd cosϕ− rt sinϕ,
x3 = x+ dx3, dx3 = −rd cosϕ+ rt sinϕ,
x4 = x+ dx4, dx4 = rd cosϕ+ rt sinϕ,

y1 = y + dy1, dy1 = rd sinϕ− rt cosϕ,
y2 = y + dy2, dy2 = −rd sinϕ− rt cosϕ,
y3 = y + dy3, dy3 = −rd sinϕ+ rt cosϕ,
y4 = y + dy4, dy4 = rd sinϕ+ rt cosϕ,

(3)

where xi is the horizontal coordinate of the corner i and for position radiuses apply rd = d/2,
rt = t/2. Velocity components vx, vy of a corner are calculated similarly:

vx1 = vx − vc(sinϕ cosα + cosϕ sinα),
vx2 = vx + vc(sinϕ cosα− cosϕ sinα),
vx3 = vx + vc(sinϕ cosα + cosϕ sinα),
vx4 = vx − vc(sinϕ cosα− cosϕ sinα),

vy1 = vy + vc(sinϕ sinα− cosϕ cosα),
vy2 = vy − vc(sinϕ sinα + cosϕ cosα),
vy3 = vy − vc(sinϕ sinα− cosϕ cosα),
vy4 = vy + vc(sinϕ sinα + cosϕ cosα),

(4)

where vc is the relative circumferencial velocity of the corners, α is the angle between coin
symmetry axis and the diagonal for which following applies:

vc = r vϕ,
sinα = rt/r,
cosα = rd/r,

r =
√
r2d + r2t .

(5)

After calculations of contact forces acting on the corners, the resultant acting on the coin
centroid is calculated:
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Fx =
4∑

i=1

Fdxi,

Fy = −mg +
4∑

i=1

(Fdyi + Fsi),

M =
4∑

i=1

(−Fdxi dyi + (Fdyi + Fsi) dxi) ,

(6)

3. Stability of static states

Before analysis of dynamical behavior we will look on static states and quantification of their
stability. For the rigid rectangle and rigid body the function of potential energy V takes form of
an ellipse originating from circular motion of the centroid around a corner:

V (ϕ) = mg (rt cosϕ+ rd sinϕ), ϕ ∈ 〈0, π/2〉. (7)

Its minimal and maximal values are following:

Vmax = V (ϕcr) = mg r, ϕcr = arctan(rd/rt),
Vmin1 = V (0) = mg rt,
Vmin2 = V (π/2) = mg rd.

(8)

For the loss of the stability of each of two statical states it is neccessary to add to the coin at
least Vmax − Vmin1 Joules or Vmax − Vmin2 Joules respectively. The ratio between these values
is given by relation:

r − rt
r − rd

≈ 181.4 (9)

It means that the coin laying on the surface of a rigid body is almost 200× more stable than
the standing coin.

If the body is elastic the situation is much more interesting. At first it applies that all three
static states exists for the same angle ϕ as for rigid case. Than their potential energy can be
derived to the form:

Vmax = V (ϕcr) = mg (r − mg
k
),

Vmin1 = V (0) = mg (rt − mg
2k
),

Vmin2 = V (π/2) = mg (rd − mg
2k
),

(10)

whereas single corner contact is considered for the critical angle ϕcr. This condition is satisfied
for the contact stiffness k ≥ kmin, for which applies:

kmin =
mg r

2r2t
≈ 154.9N/m. (11)

As for rigid case we can derive ratio between values of energetic potential needed to loss of
stability of static states:
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r − rt −mg/2k
r − rd −mg/2k

≈ 187.2 (12)

Note that deviation between rigid and elastic solution for chosen stiffness is only about 3%.
This relation does not have real value for the denominator equal to zero. It can be signed as
critical contact stiffness kcr. The standing coin could be at static state only if the stiffness k is
higher than this critical value (a bifurcation point):

kcr =
mg

2(rd − r)
≈ 308.96N/m. (13)

4. Dynamical simulation

Equations of motion of the coin are given by classical approach in the following form as
dynamical system:

dvx
dt

=
Fx

m
,

dvy
dt

=
Fy

m
,

dvϕ
dt

=
M

I
,

dx

dt
= vx,

dy

dt
= vy,

dϕ

dt
= vϕ,

(14)

where t is time. This system is solved numerically by the Symplectic Euler method, see e.g.
Hairer (2010), with step h = 10−6 s. Each simulation starts with specific initial conditions and
is terminated after two seconds of the motion of the coin. The values of initial conditions are
taken from ranges which ensures that after two seconds a stable state will be achieved. On fig. 2
two simulation results are shown. One for typical solution where the coin lay at the end (on the
left) and second where the coin stands2 (on the right).

Obrázek 2: Phases of two simulations; the colors are darker as time runs out
2 y0 = r, vy0 = 1.197 m/s, vϕ0 = 3.508 rad/s and the others are zero
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The coin has six initial conditions: x0, y0, ϕ0, vx0, vy0, vϕ0. For the basin boundaries the initial
horizontal position x0 is obviously irrelevant. Therefore only five initial conditions have an
influence on basin boundaries. On the current processors we need approximately one half of
second to calculate one simulation. If we use raw sampling with 128 samples of each of five
condition then we need to calculate 1285 simulations (34 360 millions) for the whole initial
conditions space. It means rawly 544 years of sequential calculation. We simplified the problem
to variation of only two initial conditions vy0, vϕ0. Other conditions are set as follows: x0 = 0 m,
y0 = r, ϕ0 = 0 rad, vx0 = 0 m/s. On the fig. 3-5 calculated basin boundaries are shown with
512 samples on each axis.
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Obrázek 3: Basin boundaries showing number of π/2 rotations
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Obrázek 4: Detail of an interesting part of previous figure
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Colors in the figures represents integer values n = 2ϕ/π which means number of π/2 rotati-
ons passed until the final state was reached. Yellow-red colors sign clockwise rotation, green-
blue colors counterclockwise rotation. Even numbers means that coin lay, odd numbers are valid
for standing coin.

On fig. 3 are 635 particular values of initial conditions from 5122 = 262 144 samples. It
means that probability of achieving the standing coin is approximately 0.24% form chosen
subset of initial condition space. Fig. 5 enlarges an expressive area from which the coin stands.
Initial conditions from this area leads to seven π/2 rotations as shown on fig. 2 on right side.
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Obrázek 5: Basins where the coin stands

5. Conclusions

The chosen model of a coin impacting to an elastic body was described in detail. The coin
was restrained to move in a plane and dependency of its final state on the initial conditions
was studied. Static states was also analysed and critical values for the elastic contact were
determined.
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