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Abstract:  The differential quadrature method (DQM) is used to solve the two-dimensional Blasius 
boundary layer problem which is described by a third-order nonlinear differential equation. The 
governing nonlinear equation of boundary-value Blasius problem is first converted to a pair of nonlinear 
initial-value problems and then solved by both the DQ method and classical fourth-order Runge-Kutta 
method (RK4). It is revealed that as compared to the RK4, the DQ method can achieve much higher order 
of accuracy for the numerical results using larger time step sizes. 
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1. Introduction 

The Blasius boundary layer is an example of two-dimensional boundary layer problems. The Blasius 
problem models the behavior of two-dimensional steady state laminar viscous flow of an 
incompressible fluid over a semi-infinite flat plate. The governing equation of the problem is  

 1( ) ( ) ( ) 0
2

f f f!!! !!" + " " =   , 0 ! " ! #  (1) 

where ! and f(!) are the dimensionless coordinate and stream function, respectively (Schiliching, 
2004). The boundary conditions for equation (1) are 

 (0) (0) 0f f != =  ,   ( ) 0f ! " =  (2) 

The problem was first solved by Blasius using a series expansions method. But the proposed 
analytic series solution does not converge at all. In fact, the obtained analytic solution is valid only for 
small values of ! (i.e., the series solution converges only within a finite interval [0, !0] where !0 is an 
unknown constant which can be determined numerically or analytically). Howarth (Howarth, 1938) 
solved the Blasius equation numerically and found !0 " 1.8894/0.33206. Furthermore, Asaithambi 
(Asaithambi, 2005) solved the Blasius equation more accurately and obtained this number as !0 " 
1.8894/0.332057336. Due to the limitation of Blasius power series solution, many attempts have been 
made to obtain the solutions which are valid on the whole domain of the problem. Some researchers 
have solved the problem numerically and some analytically or semi-analytically. Applying the 
homotopy analysis method (Liao, 1997), Liao obtained an analytic solution for the Blasius equation 
which is valid in the whole region of the problem (Liao, 1998; Liao,1999). Using the variational 
iteration method (He,1997), He constructed a five-term approximate-analytic solution for the Blasius 
equation which is also valid for large values of ! (He,1999). However, the solutions obtained were not 
very accurate. The Adomian decomposition method (ADM) has also been used by some researchers to 
find analytic solutions for the Blasius equation (Allan and Syam, 2005; Wang, 2004; Abbasbandy, 
2007). A homotopy perturbation solution to this problem was presented by He (He, 2003; He, 2004). 
Fang et al. (Fang et al., 2006), Cortell (Cortell, 2005), Ahmad (Ahmad, 2007), and Ahmad and Al-
Barakati (Ahmad, 2009) also solved the Blasius problem using various numerical and analytical 
methods. From the review of the proposed schemes in (Liao, 1997; Ahmad and Al-Barakati, 2009), two 
general limitations may be observed: (1) The proposed approximate-analytic methods can not yield 
accurate solutions when a rather small number of solution terms are used, (2) Many calculations 
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should be done to construct the resulting semi-analytic solutions and this increases considerably the 
CPU time especially when a large number of terms of solutions are to be used. The above-mentioned 
limitations can be eliminated by using the higher-order methods such as the differential quadrature 
method (DQM).The DQ method is capable of yielding high accurate numerical solutions using very 
few grid points. So far, the DQ method has been efficiently employed in a variety of problems in 
engineering, mathematics, and physical sciences and is emerging as a powerful numerical 
discretization tool. However, the DQ method has its difficulty in implementation to the problems with 
irregular and complex geometry. Since the time domain has no such difficulty, the strengths of higher-
order accuracy of the DQ method can be fully exploited in approximating the time derivatives.       

    In this work, we first convert the Blasius equation to a pair of initial-value problems (Na, 1979) 
and then solve the pair of initial-value problems by the DQ method. The resultant initial-value 
problems are also solved by the conventional fourth-order Runge-Kutta method (RK4). The efficiency, 
accuracy, and convergence of the DQ time integration method are then investigated and analyzed. It is 
demonstrated that the DQ method gives better accuracy than the RK4 using much larger time steps.     

2. Differential quadrature method 

Let ( )f t  be a solution of a differential equation and 0 = t1, t2 ,…, tm = T be a set of sample points in the 
time domain. According to the DQ method, the first-order derivative of the function ( )f t   at any 
sample time points can be approximated by the following formulation (Bellman and Casti, 1971; Shu, 
2001; Bert and Malik , 1996)  

 !f (ti ) = Aij f (t j )
j=1

m

!      or   !fi = Aij f j
j=1

m

!   (3) 

where m is the number of sample points in the time domain, ( )jf t represents the functional value at 
a sample time point tj, ( )if t! indicates the first-order derivative of ( )f t   at a time point ti, and Aij is the 
weighting coefficient of the first-order derivative. The weighting coefficients can be determined by the 
functional approximations in the time domain. Using the Lagrange interpolation polynomials as the 
approximating functions (say test functions), Quan and Chang (Quan and Chang, 1989) obtained the 
following algebraic formulations to compute the first-order weighting coefficients  
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where M(1)(t) is defined as  
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In this work, we used the non-uniformly spaced sample points (i.e, the Chebyshev-Gauss-Lobatto 
sample points) for calculation of weighting coefficients. These points are given by 
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where T is the time span. 

3. Conversion of Blasius boundary-layer problem to a pair of initial-value problems 

The boundary-layer problem (1) can be transformed to the following pair of initial-value problems 
(Na, 1979) 
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and 
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4.  DQ analogs of the pair initial-value problems 

From equations (7) and (8), it may be seen that the only difference between two resultant initial-value 
problems is related to the value of the second-order derivative initial condition. Thus, the procedure 
for two initial-value problems is actually the same. To be applicable the procedure for both the initial-
value problems, we consider the following equation 

 0)()(5.0)( =!!+!!! """ FFF    (10) 

with general initial conditions 

 0)0( FF = ,  0)0( FF !=! ,  0)0( FF !!=!!     (11) 

where 0F , 0F !, and 0F !!  are constants. 

The third-order initial-value problem (10) can be converted into a set of first-order initial-value 
problems as in the following 
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with initial conditions  

 0)0( Fx = ,  0)0( Fy != ,  0)0( Fz !!=  (13) 

From the quadrature rule, equation (3), the first-order derivatives of functions x, y, and z can 
expressed as 
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Substituting equation (14) in (12) yields 
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Applying the initial conditions (13) in (15) yields 
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Equation (16) is a nonlinear system of algebraic equations which can be solved by iterative 
methods. In this work, we use the Newton-Raphson method to solve system (16). Our numerical 
experiment for the present problem showed that only 3-5 iterations are sufficient to achieve accurate 
solutions using the Newton-Raphson method.  

Guran A., Gwinner J. 337



 

 

5. A step-by-step DQ in time 

When very long-term solutions are required, it is more convenient to apply the DQ method as a step-
by-step time integration scheme. In this technique, the time domain of interest is first divided into 
several time elements. The DQ method in then applied to each time element independently. Note that 
the solutions at the end of each time element will be used as initial conditions for the next time 
element (for more details of this technique see Refs. (Guran and Ahmadi, 2011)). 

6. Numerical results and discussion  

As it was mentioned earlier, we should first determine the magnitude of L (defined in equation (9)). 
This parameter can be obtained using the solution of equation (7). To solve equation (7) using the 
scheme described in Sec. 5, we divide the time domain into n equal DQM time element with m sample 
time points (per DQM time element). The total number of sample time points and the average time 
step can be obtained as, respectively, (Guran and Ahmadi, 2011) 

 Mtot = n (m-1) + 1   (17) 

 !t = T/( Mtot -1) = T/( n (m-1))    (18) 

where T is the length of time span. Figure 1 presents the variations of )(!g  with ! for different values 
of n (number of time elements) and m (number of time points per time element). It can be seen that by 
increasing n and/or m, the DQ solutions are converged rapidly. Note that the DQ solution results at m 
time points are utilized to obtain the solutions at all the time points located in time interval [0, tm] 
(where tm is the length of DQ time elements) via the Lagrange interpolation scheme. Thus we are able 
to find a continuous representation for the function )(!g using the Lagrange interpolation scheme. 

Fig. 1: Convergence and accuracy of DQ solutions with respect to the number of sample time points, 
m, and number of time elements, n. 
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It is interesting that the DQ method yields converged and rather accurate solutions using only m=3 
time points. Note that m=3 is the smallest number of sample time points which can be used for the 
solution of present problem using the DQ method. This is due to the fact that the present problem is a 
third-order nonlinear equation and has three initial conditions given at the initial time point. It can also 
be seen from figure (1) that as !  increases )(!g  approaches to a constant value. This constant value is 
actually the magnitude of L. Note that in the cases shown in figure (1), the values of !  is in the range 
0 #! # 5. It is clear that to determine the magnitude of L (= )(!g ), it in not required to solve the initial-
value problem (7) at all the domain 0 #! # $. For example, as it can be seen from figure (1), one can 
solve the problem at the interval 0 #! # 5 to find an approximation of L. However, through numerical 
experiments we found that the most accurate L values can be obtained if the problem (7) is solved in 
the domain 0 #! # 10. Table 1 gives the results for L. An excellent rate of convergence can be 
observed. It can be seen that the DQ results are converged without instability for an increase in n and 
m. It can also be observed that by increasing the number of sample time points per time element, i.e., 
m, a smaller number of time elements, i.e., n, are required to obtain solutions with identical accuracies 
and vice versa (i.e., by increasing n a smaller m are required). However, when m is too small, the rate 
of convergence is slow and very large values of n are required to achieve accurate solutions. 

Tab. 1: Convergence and accuracy of the DQ solution for )10(gL !=  
     n                                m=7                                    m=9                                  m=11                             m=13                                 m=15                       
  2            2.07125099256072           2.08616508333382          2.08552625546298         2.08535915160828          2.08542031533568              
   3            2.08086107493813           2.08573633901879          2.08539005571989         2.08541016274351          2.08540913792848 
   5            2.08564569949467              2.08540031913574          2.08540939693684         2.08540917319786          2.08540917643640 
   10          2.08540977491746           2.08540917461438          2.08540917646167         2.08540917643749          2.08540917643791*** 

   15          2.08540923283780           2.08540917639232          2.08540917643792*        2.08540917643791**       2.08540917643791 
   20          2.08540918655018           2.08540917643358          2.08540917643791         2.08540917643790          2.08540917643791 
   30          2.08540917732140           2.08540917643774          2.08540917643791         2.08540917643791          2.08540917643791 
*%tDQ=0.06666,   **%tDQ=0.05555,  ***%tDQ=0.07143,   

     In other words, the rate of convergence of solutions is more sensitive to m than n. Thus, to 
obtain accurate solutions with a reasonable time step, one should first choose the correct value 
of m and then increase n to reach to required accuracy. From Table 1, it is also observed that 
the magnitude of L is found to be converged up to fifteen digits. In Table 2 the DQ solutions 
are compared with those of RK4. Note that the sizes of time steps for two schemes are set to 
be equal to provide a reasonable comparison between two schemes.  

Tab. 2: Convergence and accuracy of DQ solution for )10(gL !=  and comparison with RK4 solution 
Method                                           m=7                                                              m=11                                                       m=15                       
DQ (n=2)                 2.07125099256072                                        2.08552625546298                                    2.08542031533568              
   RK4*             6.67115504023E+4                                       2.01369359611100                                   2.08539498816094 
DQ (n=5)                 2.08564569949467                                        2.08540939693684                                    2.08540917643640 
   RK4           2.08539777120960                                      2.08540721539089                                 2.08540861092003 
DQ (n=10)             2.08540977491746                                       2.08540917646167                                 2.08540917643791 
   RK4                     2.08540817139355                                      2.08540903063789                                 2.08540913673422 
DQ (n=20)              2.08540918655018                                        2.08540917643791                                  2.08540917643791 
   RK4                     2.08540910423540                                        2.08540916658843                                   2.08540917381891     
*Note that the time steps for RK4 are so chosen that they are equal to those of DQM (i.e., %tRK4= %tDQM =T/(n(m-1)) and T=10 here) 

To check the accuracy of DQ and RK4 solutions, shown in Tables 1 and 2, the problem is solved again 
using the RK4 and with very small time steps and the solutions are cited in Table 3.  

Tab. 3: Convergence and accuracy of RK4 solution for )10(gL !=  
!t=0.1                                    !t=0.01                           !t=0.002                     !t=0.001                         !t=0.0005 

2.08540903063789            2.08540917642120          2.08540917643787         2.08540917643789          2.08540917643787 

By comparing the DQ results with those of RK4, one can conclude that the DQ method needs much 
larger time steps to achieve accurate solutions. This illustrates the superiority of the DQ time 
integration method over the classical RK4. From the RK4 solutions shown in Table 2, one can also 
observe the numerical instability of RK4 when n=2 and m=7.  In fact, when the time step is too large, 
the RK4 may encounter some numerical instability as seen in Table 2. 

    Tables 4-6 present convergence and accuracy of DQ time integration scheme for the solution of 
Blasius equation (i.e., equation (8)). A single time element is employed (i.e., n=1). The results of RK4 
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are also included for comparison. Rapid convergence and stability of the numerical solutions versus 
increasing DQ number of sample time points are obvious. Note that the DQ solutions are converged 
up to eight digits. Since the time steps are so large, the RK4 and DQ solutions match only to four 
decimal positions. This is due to the fact that the RK4 needs much smaller time step sizes than DQM 
to achieve results with identical accuracies.  

Tab.4: Convergence and accuracy of DQ solution for )5(f  (n=1) and comparison with the RK4 solution 
Method                   m=6                      m=7                    m=9                      m=11                   m=13                     m=15                 m=20 
DQ            3.2522253             3.2717815           3.2842311            3.2832062            3.2832779             3.2832734         3.2832736 
RK4           3.2847702             3.2839304           3.2834541            3.2833406            3.2833037             3.2832890         3.2832778 

 
Tab. 5: Convergence and accuracy of DQ solution for )5(f !  (n=1) and comparison with the RK4 solution 

Method                   m=6                      m=7                    m=9                      m=11                   m=13                     m=15                 m=20 
DQ            0.9874834             0.9886335           0.9917923            0.9915237            0.9915431             0.9915418         0.9915419 
RK4           0.9903180             0.9910017           0.9913909            0.9914847            0.9915157             0.9915282         0.9915381 

 
Tab. 6: Convergence and accuracy of DQ solution for )5(f !!  (n=1) and comparison with the RK4 solution 

Method                   m=6                      m=7                    m=9                      m=11                   m=13                     m=15                 m=20 
DQ            0.0164112             0.0159920           0.0158999            0.0159073            0.0159067             0.0159068         0.0159068 
RK4           0.0181004             0.0168513           0.0161596            0.0159995            0.0159482             0.0159279         0.0159125 

   Table 7 gives the convergence and accuracy of RK4 solutions with respect to time step sizes. The 
DQ results with %t=1/4 =0.25 are also included for comparison. It can be seen that the DQ solutions 
with %t=1/4 and RK4 solutions with %t=1/20 are coincident to each other. Needless to say the DQ 
method is more efficient than RK4. We also compared our solutions with those of Howarth (Howarth, 
1938) and we found that both results agree well with each other.  

Tab. 7: Convergence and accuracy of RK4 for the solution of Blasius equation and comparisons with the DQ results 
!t=1/4                  !t=1/7                  !t=1/10               !t=1/12                 !t=1/16                   !t=1/20         DQ (!t=1/4) 
)5(f           3.28327697           3.28327398          3.28327374           3.28327370           3.28327367           3.28327367       3.28327367 

)5(f !          0.99153882           0.99154159          0.99154183           0.99154186           0.99154189           0.99154190       0.99154190 

)5(f !!          0.01591136            0.01590723          0.01590690           0.01590684           0.01590681           0.01590680       0.01590680 

     Figure 2 presents the accuracy, convergence, and stability of DQ time integration method for 
computing the long-term solutions. It is seen that the DQ time integration scheme is also very efficient 
for time integration over long time duration. But care should be taken in choosing proper values of n 
and m.  From figure 2 it is observed that when m is incorrectly chosen, the DQ time integration 
scheme may also be possible to yield inaccurate solutions. From the results shown in this figure and 
those cited in Tables 1-6, one can also concluded that the number of time points per time element, i.e., 
m, can not be too small. If m be too small, we then should use a large number of time element n to 
obtain accurate solutions and this increases the CPU time considerably. One the other hand, m can not 
be too large. If m be too large, the resulting DQ time integration scheme may be increasingly unstable. 
This is actually due to the fact that the DQ weighting coefficient matrices tend to be ill-conditioned by 
increasing the number of sample time points. The present authors recommend that m be in the range 5 
# m # 15. If m be in the above range, one needs not to be worried about efficiency and stability of DQ 
method. In Table 8 the DQ solutions with %t = 0.34965 are compared with those of RK4 with %t = 
0.25 and %t = 0.1 for different values of ". It can be seen that the DQ results with %t = 0.34965 are 
better in accuracy than those obtained using RK4 with %t = 0.25. Also, one can observe the numerical 
instability of RK4 for long-term solutions when %t = 0.25. In other words, the RK4 solutions with %t = 
0.25 encounter a convergence problem and approach to infinity after " = 35. It can also be seen that 
the RK4 solutions with %t = 0.1 are high accurate, since as " increases )(!f "  approaches to unity and 

)(!f ""  approaches to zero. The DQ solutions with %t = 0.34965 are also accurate, but their accuracy is 
less than those of RK4 with %t = 0.1. 
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Fig. 2: Convergence and accuracy of the DQ method for the solutions of Blasius equation.  

 
 

Tab. 8: Convergence and accuracy of RK4 for the solution of Blasius equation and comparisons with the DQ results 
   
  "               DQ(n=13,m=12: %t = 0.34965 )                                   RK4 (%t = 0.25)                                    RK4 (%t = 0.1) 
          
               )(!f              )(!f "          )(!f ""               )(!f             )(!f "          )(!f ""             )(!f          )(!f "          )(!f ""  

 0.5       0.0414928      0.1658853      0.3309111          0.0414937      0.1658852     0.3309110        0.0414928     0.1658853    0.3309110          
 2.5       0.9963114      0.7512599      0.2174116          0.9963139      0.7512585     0.2174121        0.9963112     0.7512597    0.2174116 
 5.0       3.2832745      0.9915421      0.0159068          3.2832769      0.9915388     0.0159113        3.2832737     0.9915418    0.0159069 
 7.5       5.7792195      0.9999821      5.5261E-5          5.7792192      0.9999811     5.5849E-5        5.7792180      0.9999818   5.5273E-5 
 10        8.2792143      1.0000002      8.4437E-9          8.2792122      0.9999994     9.4693E-9        8.2792123    0.99999998   8.4588E-9 
 15        13.279215      1.0000002      4.361E-16          13.279209      0.9999994     2.862E-19        13.279212    0.99999998   1.736E-20 
 20        18.279217      1.0000002      6.458E-25          18.279207      0.9999994     9.377E-29        18.279212    0.99999998   1.686E-37 
 25        23.279218      1.0000002      1.289E-28          23.279204      0.9999994     3.180E-31        23.279212    0.99999998   1.667E-59 
 30        28.279219      1.0000002      2.892E-33          28.279201      0.9999994     9.181E-26        28.279212    0.99999998   1.404E-85 
 35        33.279220      1.0000002      8.721E-42          33.279198      0.9999994     2.333E-13        33.279212    0.99999998   9.27E-114 
 40        38.279221      1.0000002      2.454E-45          -9.8323E2      -9.8592E4     -2.1425E7        38.279212    0.99999998    5.78E-141  
 45        43.279221      1.0000002      2.417E-49           - Infinity         - Infinity        - Infinity          43.279211    0.99999998   7.72E-164 
 50        48.279223      1.0000002      1.151E-53           - Infinity         - Infinity        - Infinity          48.279211    0.99999998   6.34E-180 
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7. Conclusion 

In this paper, the DQ method is employed to solve the well-known Blasius boundary layer problem. 
The efficiency, accuracy, and convergence of the DQ method are investigated and analyzed. It is 
shown that the DQ method can predict the behavior of Blasius boundary layer accurately. Numerical 
comparisons between the DQ time integration method and RK4 reveal that the DQ method is a 
promising and effective tool for handling the nonlinear systems of ordinary differential equations. 
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