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Abstract: The different variants of the Navier -Stokes equations are presented in the paper. The authors 
also present new variants to be used for qualitative analysis of the fluid flow. New variants can also be 
used for the numerical solution, especially for the method of control volumes. 
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1. Introduction 

 

Nowadays, research in fluid flow is mainly focused on computational simulation. Often, however, a 
qualitative analysis of the problem is missing. Predicting the behavior of the pressure and the velocity 
fields can be based on qualitative analysis of the Navier -Stokes equations and continuity equation. 
Firstly, it is necessary to modify the above mentioned equations to a suitable form for analysis. 

Recently, the questions of unsteady fluid motion are being solved. Modified Navier -Stokes equations 
into a new form might serve for these purposes. This form is suitable for qualitative analysis of the 
interaction of body with fluids, as well as for the new variant of the method of control volumes. 

It is possible that the proposed modifications of the local gravity acceleration forces are already 
known. In this case, the author believes that the shown diversity of the Navier Stokes equations will 
serve to the readers.  

 

Used symbols 

ix - Cartesian system coordination, iy - rotating system coordination, t - time, u - translation, v - absolute 

velocity, n  - outer normal vector to the liquid, w - relative velocity,ω - angular velocity, ij - Kronecker 

delta, ijk - Levi-Civit tensor,Ω - rot v, rot w;v rotΩgraddivv, - dynamical viscosity.  - bulk 

viscosity, - second viscosity,  - density, H - magnetic field intensity, - surroundings permeability, g - 

gravity acceleration, x -  321 ,, xxx , y -  321 ,, yyy ,Y – specific energy, U - tangential velocity, v - sound 

velocity, the sum convention is used in the paper. 

2. Compressible liquid  

As it is well known that the equation of force equilibrium of macroscopic fluid particle can be written 
in the form:  
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It is solved together with the continuity equation: 
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It is possible to split the stress tensor ij  on the bases of superposition (de Groot and Mazur 1962) 

into two parts: 

 ijijij   (3) 

The first part ij is connected with the so called reversible thermodynamic phenomenon and is 

represented by the pressure function p, see the term:  

 ijij p  . (4) 

The irreversible part ij  includes the damping properties of the liquid. These properties may vary 

significantly for different types of fluids. Therefore it is necessary to seek constitutive relations for 
each fluid separately, where the stress tensor ij depends on the strain rate tensor. According to this 

dependence, fluids are divided into so-called Newtonian and the other rheological fluids (e.g. 
Bingham). 

In this paper we consider only the Newtonian fluids that are characterized by dependence: 

 kkijijij vv   2  (5) 

where   is so-called second viscosity (Brdička et al., 2000; de Groot and Mazur, 1962; Pochylý et al., 
2011). 

Based on the kinetic theory of gases principle, Enskog (Brdička et al., 2000) derived the relationship: 

 
3

2
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On the basis of a series of experiments it was found (Pochylý et al. 2011) that this relationship is not 
endorsed and has to be supplemented by the value of bulk viscosity  , so that:  
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3

2   (7) 

The results of the experiments suggest that   strongly depends on the frequency. For water, the 
following applies:  
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When we expressed 
dt

dvi  in Euler approach and considering (4), (5), (7), can be (1) written in 
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or as a vector: 
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Vector G on the right side of (10) represents the bulk force. This effect is caused by external 
gravitational fields gG , or electromagnetic fields MG . For these forces the relations hold:  

 Gg  g ;       GM   rot H H  (11) 

In the text that follows, we neglect MG , as the influence of magnetic fields deserves a special 
attention. 

In many technical applications, the specific energy Y  is of an importance, defined by term: 

 xg
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. (12) 

For these purposes, it is appropriate to modify the expression for the gravitational force gG . We 

propose a new shape for gG . It is easy to show that the following holds: 

 Gg  grad gx  . (13) 

By this definition of gravitational forces, the equation (10) can be modified by using the specific 
energy: 

   0rotgraddiv2grad 
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When solving small oscillations of a body in the compressible fluid, equations (14) could be written 
using the translation u . If we decompose the liquid field into its stationary and non-stationary 
components induced by small oscillations of the body, it can be written that  (Pochylý, 2009). 

  udiv2vp   (15) 
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If we neglect in the equation (14) the small velocity components and when we express it using the 
translation  
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 it (1.10) can be written in the form: 
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This form of the equation allows using the ANSYS software environment, which is commonly used in 
the classical mechanics problems solutions. 

3. Incompressible liquid 

The incompressibility condition is expressed by the continuity equation in the form:  

 0div v . (19) 
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on the basis of this equation, (14) can be simplified to the form:  
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Equation (20) is easily written in the index symbolism in two versions: 
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or in a simpler form: 
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For the investigation of the force effects between the liquid and the body it is suitable to write the 
equation (22) in the basic form (1), taking into account the substance's derivative. 
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Under these assumptions, (1) can be written for example in the form: 
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Assuming that the body is made up of multiple contiguous areas bounded by the surface S and the 
liquid is sealed in the field V in between  and S , you can write for the force F  the relationship  

   
S

jijii dSnF .F  (25) 

After integration of (24) using the Gauss-Ostrogradsky theorem we obtain: 
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The forces analysis in the unsteady motion of the body in the liquid according to the relation (26) is 
complex, given that you cannot reliably determine the effect of volume integrals. 

This deficiency can be removed by following the proposed modification. Easy to see that, assuming 
(19), it holds: 
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Using this adjustment, (24) as well as (26) can be significantly simplified. Substituting into (24), (26) 
we obtain:  
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The right side of the expression (29) is no longer dependent on the volume integrals and determines 
the additional effects of the liquid on the body. 

Equation (28) can serve as a starting point for the solution of the non-stationary fluid mechanics 
problems, including unsteady body motion in the liquid. 

For example, for a method of control volumes: By the integrating of (28) over the control volume V  
bounded by the surface S , the following equation can be obtained:  
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4. Relative space 

Suppose that the coordinate system  iy  rotates to ix  by angular velocity  0,0,ω . Navier -Stokes 

equations in the system  iy  can be written for incompressible liquid for example in the following two 

options: 
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Also in the component form:  
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Adjusting 
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Can be (34) rewritten into simpler form: 
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The expression (36) expresses a new notation of Navier -Stokes equations in a rotating coordinate 
system suitable for further analysis 
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5. Conclusions 

The paper presents some new findings, which can be used both for qualitative analysis of the flow, as 
well as to simplify the method of control volumes. The volume or the second viscosity is of particular 
importance. They can get more accurate results for reliable modeling of unsteady pressure pulsations. 
The essential findings presented in this study can be formulated as follows:  
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